![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brdom2 | Structured version Visualization version GIF version |
Description: Dominance in terms of strict dominance and equinumerosity. Theorem 22(iv) of [Suppes] p. 97. (Contributed by NM, 17-Jun-1998.) |
Ref | Expression |
---|---|
brdom2 | ⊢ (𝐴 ≼ 𝐵 ↔ (𝐴 ≺ 𝐵 ∨ 𝐴 ≈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdom2 8098 | . . 3 ⊢ ≼ = ( ≺ ∪ ≈ ) | |
2 | 1 | eleq2i 2795 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ ≼ ↔ 〈𝐴, 𝐵〉 ∈ ( ≺ ∪ ≈ )) |
3 | df-br 4761 | . 2 ⊢ (𝐴 ≼ 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ ≼ ) | |
4 | df-br 4761 | . . . 4 ⊢ (𝐴 ≺ 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ ≺ ) | |
5 | df-br 4761 | . . . 4 ⊢ (𝐴 ≈ 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ ≈ ) | |
6 | 4, 5 | orbi12i 544 | . . 3 ⊢ ((𝐴 ≺ 𝐵 ∨ 𝐴 ≈ 𝐵) ↔ (〈𝐴, 𝐵〉 ∈ ≺ ∨ 〈𝐴, 𝐵〉 ∈ ≈ )) |
7 | elun 3861 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ ( ≺ ∪ ≈ ) ↔ (〈𝐴, 𝐵〉 ∈ ≺ ∨ 〈𝐴, 𝐵〉 ∈ ≈ )) | |
8 | 6, 7 | bitr4i 267 | . 2 ⊢ ((𝐴 ≺ 𝐵 ∨ 𝐴 ≈ 𝐵) ↔ 〈𝐴, 𝐵〉 ∈ ( ≺ ∪ ≈ )) |
9 | 2, 3, 8 | 3bitr4i 292 | 1 ⊢ (𝐴 ≼ 𝐵 ↔ (𝐴 ≺ 𝐵 ∨ 𝐴 ≈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∨ wo 382 ∈ wcel 2103 ∪ cun 3678 〈cop 4291 class class class wbr 4760 ≈ cen 8069 ≼ cdom 8070 ≺ csdm 8071 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-sep 4889 ax-nul 4897 ax-pr 5011 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ral 3019 df-rab 3023 df-v 3306 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-nul 4024 df-if 4195 df-sn 4286 df-pr 4288 df-op 4292 df-br 4761 df-opab 4821 df-xp 5224 df-rel 5225 df-f1o 6008 df-en 8073 df-dom 8074 df-sdom 8075 |
This theorem is referenced by: bren2 8103 domnsym 8202 modom 8277 carddom2 8916 axcc4dom 9376 entric 9492 entri2 9493 gchor 9562 frgpcyg 20045 iunmbl2 23446 dyadmbl 23489 padct 29727 volmeas 30524 ovoliunnfl 33683 ctbnfien 37801 |
Copyright terms: Public domain | W3C validator |