![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brdom | Structured version Visualization version GIF version |
Description: Dominance relation. (Contributed by NM, 15-Jun-1998.) |
Ref | Expression |
---|---|
bren.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
brdom | ⊢ (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bren.1 | . 2 ⊢ 𝐵 ∈ V | |
2 | brdomg 8119 | . 2 ⊢ (𝐵 ∈ V → (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∃wex 1841 ∈ wcel 2127 Vcvv 3328 class class class wbr 4792 –1-1→wf1 6034 ≼ cdom 8107 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-8 2129 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-sep 4921 ax-nul 4929 ax-pr 5043 ax-un 7102 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ral 3043 df-rex 3044 df-rab 3047 df-v 3330 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-nul 4047 df-if 4219 df-sn 4310 df-pr 4312 df-op 4316 df-uni 4577 df-br 4793 df-opab 4853 df-xp 5260 df-rel 5261 df-cnv 5262 df-dm 5264 df-rn 5265 df-fn 6040 df-f 6041 df-f1 6042 df-dom 8111 |
This theorem is referenced by: domen 8122 domtr 8162 sbthlem10 8232 1sdom 8316 ac10ct 9018 domtriomlem 9427 2ndcdisj 21432 birthdaylem3 24850 |
Copyright terms: Public domain | W3C validator |