MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brcnvtrclfv Structured version   Visualization version   GIF version

Theorem brcnvtrclfv 13738
Description: Two ways of expressing the transitive closure of the converse of a binary relation. (Contributed by RP, 9-May-2020.)
Assertion
Ref Expression
brcnvtrclfv ((𝑅𝑈𝐴𝑉𝐵𝑊) → (𝐴(t+‘𝑅)𝐵 ↔ ∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝐵𝑟𝐴)))
Distinct variable groups:   𝐴,𝑟   𝐵,𝑟   𝑅,𝑟
Allowed substitution hints:   𝑈(𝑟)   𝑉(𝑟)   𝑊(𝑟)

Proof of Theorem brcnvtrclfv
StepHypRef Expression
1 brcnvg 5301 . . 3 ((𝐴𝑉𝐵𝑊) → (𝐴(t+‘𝑅)𝐵𝐵(t+‘𝑅)𝐴))
213adant1 1078 . 2 ((𝑅𝑈𝐴𝑉𝐵𝑊) → (𝐴(t+‘𝑅)𝐵𝐵(t+‘𝑅)𝐴))
3 brtrclfv 13737 . . 3 (𝑅𝑈 → (𝐵(t+‘𝑅)𝐴 ↔ ∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝐵𝑟𝐴)))
433ad2ant1 1081 . 2 ((𝑅𝑈𝐴𝑉𝐵𝑊) → (𝐵(t+‘𝑅)𝐴 ↔ ∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝐵𝑟𝐴)))
52, 4bitrd 268 1 ((𝑅𝑈𝐴𝑉𝐵𝑊) → (𝐴(t+‘𝑅)𝐵 ↔ ∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝐵𝑟𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037  wal 1480  wcel 1989  wss 3572   class class class wbr 4651  ccnv 5111  ccom 5116  cfv 5886  t+ctcl 13718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-ral 2916  df-rex 2917  df-rab 2920  df-v 3200  df-sbc 3434  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-op 4182  df-uni 4435  df-int 4474  df-br 4652  df-opab 4711  df-mpt 4728  df-id 5022  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-res 5124  df-iota 5849  df-fun 5888  df-fv 5894  df-trcl 13720
This theorem is referenced by:  brcnvtrclfvcnv  13740
  Copyright terms: Public domain W3C validator