Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brcgr3 Structured version   Visualization version   GIF version

Theorem brcgr3 32484
Description: Binary relation form of the three-place congruence predicate. (Contributed by Scott Fenton, 4-Oct-2013.)
Assertion
Ref Expression
brcgr3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → (⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝐹⟩⟩ ↔ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩)))

Proof of Theorem brcgr3
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑛 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opeq1 4537 . . . 4 (𝑎 = 𝐴 → ⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝑏⟩)
21breq1d 4794 . . 3 (𝑎 = 𝐴 → (⟨𝑎, 𝑏⟩Cgr⟨𝑑, 𝑒⟩ ↔ ⟨𝐴, 𝑏⟩Cgr⟨𝑑, 𝑒⟩))
3 opeq1 4537 . . . 4 (𝑎 = 𝐴 → ⟨𝑎, 𝑐⟩ = ⟨𝐴, 𝑐⟩)
43breq1d 4794 . . 3 (𝑎 = 𝐴 → (⟨𝑎, 𝑐⟩Cgr⟨𝑑, 𝑓⟩ ↔ ⟨𝐴, 𝑐⟩Cgr⟨𝑑, 𝑓⟩))
52, 43anbi12d 1547 . 2 (𝑎 = 𝐴 → ((⟨𝑎, 𝑏⟩Cgr⟨𝑑, 𝑒⟩ ∧ ⟨𝑎, 𝑐⟩Cgr⟨𝑑, 𝑓⟩ ∧ ⟨𝑏, 𝑐⟩Cgr⟨𝑒, 𝑓⟩) ↔ (⟨𝐴, 𝑏⟩Cgr⟨𝑑, 𝑒⟩ ∧ ⟨𝐴, 𝑐⟩Cgr⟨𝑑, 𝑓⟩ ∧ ⟨𝑏, 𝑐⟩Cgr⟨𝑒, 𝑓⟩)))
6 opeq2 4538 . . . 4 (𝑏 = 𝐵 → ⟨𝐴, 𝑏⟩ = ⟨𝐴, 𝐵⟩)
76breq1d 4794 . . 3 (𝑏 = 𝐵 → (⟨𝐴, 𝑏⟩Cgr⟨𝑑, 𝑒⟩ ↔ ⟨𝐴, 𝐵⟩Cgr⟨𝑑, 𝑒⟩))
8 opeq1 4537 . . . 4 (𝑏 = 𝐵 → ⟨𝑏, 𝑐⟩ = ⟨𝐵, 𝑐⟩)
98breq1d 4794 . . 3 (𝑏 = 𝐵 → (⟨𝑏, 𝑐⟩Cgr⟨𝑒, 𝑓⟩ ↔ ⟨𝐵, 𝑐⟩Cgr⟨𝑒, 𝑓⟩))
107, 93anbi13d 1548 . 2 (𝑏 = 𝐵 → ((⟨𝐴, 𝑏⟩Cgr⟨𝑑, 𝑒⟩ ∧ ⟨𝐴, 𝑐⟩Cgr⟨𝑑, 𝑓⟩ ∧ ⟨𝑏, 𝑐⟩Cgr⟨𝑒, 𝑓⟩) ↔ (⟨𝐴, 𝐵⟩Cgr⟨𝑑, 𝑒⟩ ∧ ⟨𝐴, 𝑐⟩Cgr⟨𝑑, 𝑓⟩ ∧ ⟨𝐵, 𝑐⟩Cgr⟨𝑒, 𝑓⟩)))
11 opeq2 4538 . . . 4 (𝑐 = 𝐶 → ⟨𝐴, 𝑐⟩ = ⟨𝐴, 𝐶⟩)
1211breq1d 4794 . . 3 (𝑐 = 𝐶 → (⟨𝐴, 𝑐⟩Cgr⟨𝑑, 𝑓⟩ ↔ ⟨𝐴, 𝐶⟩Cgr⟨𝑑, 𝑓⟩))
13 opeq2 4538 . . . 4 (𝑐 = 𝐶 → ⟨𝐵, 𝑐⟩ = ⟨𝐵, 𝐶⟩)
1413breq1d 4794 . . 3 (𝑐 = 𝐶 → (⟨𝐵, 𝑐⟩Cgr⟨𝑒, 𝑓⟩ ↔ ⟨𝐵, 𝐶⟩Cgr⟨𝑒, 𝑓⟩))
1512, 143anbi23d 1549 . 2 (𝑐 = 𝐶 → ((⟨𝐴, 𝐵⟩Cgr⟨𝑑, 𝑒⟩ ∧ ⟨𝐴, 𝑐⟩Cgr⟨𝑑, 𝑓⟩ ∧ ⟨𝐵, 𝑐⟩Cgr⟨𝑒, 𝑓⟩) ↔ (⟨𝐴, 𝐵⟩Cgr⟨𝑑, 𝑒⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝑑, 𝑓⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝑒, 𝑓⟩)))
16 opeq1 4537 . . . 4 (𝑑 = 𝐷 → ⟨𝑑, 𝑒⟩ = ⟨𝐷, 𝑒⟩)
1716breq2d 4796 . . 3 (𝑑 = 𝐷 → (⟨𝐴, 𝐵⟩Cgr⟨𝑑, 𝑒⟩ ↔ ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝑒⟩))
18 opeq1 4537 . . . 4 (𝑑 = 𝐷 → ⟨𝑑, 𝑓⟩ = ⟨𝐷, 𝑓⟩)
1918breq2d 4796 . . 3 (𝑑 = 𝐷 → (⟨𝐴, 𝐶⟩Cgr⟨𝑑, 𝑓⟩ ↔ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩))
2017, 193anbi12d 1547 . 2 (𝑑 = 𝐷 → ((⟨𝐴, 𝐵⟩Cgr⟨𝑑, 𝑒⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝑑, 𝑓⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝑒, 𝑓⟩) ↔ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝑒⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝑒, 𝑓⟩)))
21 opeq2 4538 . . . 4 (𝑒 = 𝐸 → ⟨𝐷, 𝑒⟩ = ⟨𝐷, 𝐸⟩)
2221breq2d 4796 . . 3 (𝑒 = 𝐸 → (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝑒⟩ ↔ ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩))
23 opeq1 4537 . . . 4 (𝑒 = 𝐸 → ⟨𝑒, 𝑓⟩ = ⟨𝐸, 𝑓⟩)
2423breq2d 4796 . . 3 (𝑒 = 𝐸 → (⟨𝐵, 𝐶⟩Cgr⟨𝑒, 𝑓⟩ ↔ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝑓⟩))
2522, 243anbi13d 1548 . 2 (𝑒 = 𝐸 → ((⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝑒⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝑒, 𝑓⟩) ↔ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝑓⟩)))
26 opeq2 4538 . . . 4 (𝑓 = 𝐹 → ⟨𝐷, 𝑓⟩ = ⟨𝐷, 𝐹⟩)
2726breq2d 4796 . . 3 (𝑓 = 𝐹 → (⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩ ↔ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩))
28 opeq2 4538 . . . 4 (𝑓 = 𝐹 → ⟨𝐸, 𝑓⟩ = ⟨𝐸, 𝐹⟩)
2928breq2d 4796 . . 3 (𝑓 = 𝐹 → (⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝑓⟩ ↔ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩))
3027, 293anbi23d 1549 . 2 (𝑓 = 𝐹 → ((⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝑓⟩) ↔ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩)))
31 fveq2 6332 . 2 (𝑛 = 𝑁 → (𝔼‘𝑛) = (𝔼‘𝑁))
32 df-cgr3 32479 . 2 Cgr3 = {⟨𝑝, 𝑞⟩ ∣ ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)∃𝑒 ∈ (𝔼‘𝑛)∃𝑓 ∈ (𝔼‘𝑛)(𝑝 = ⟨𝑎, ⟨𝑏, 𝑐⟩⟩ ∧ 𝑞 = ⟨𝑑, ⟨𝑒, 𝑓⟩⟩ ∧ (⟨𝑎, 𝑏⟩Cgr⟨𝑑, 𝑒⟩ ∧ ⟨𝑎, 𝑐⟩Cgr⟨𝑑, 𝑓⟩ ∧ ⟨𝑏, 𝑐⟩Cgr⟨𝑒, 𝑓⟩))}
335, 10, 15, 20, 25, 30, 31, 32br6 31979 1 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → (⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝐹⟩⟩ ↔ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  w3a 1070   = wceq 1630  wcel 2144  cop 4320   class class class wbr 4784  cfv 6031  cn 11221  𝔼cee 25988  Cgrccgr 25990  Cgr3ccgr3 32474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pr 5034
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ral 3065  df-rex 3066  df-rab 3069  df-v 3351  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-sn 4315  df-pr 4317  df-op 4321  df-uni 4573  df-br 4785  df-opab 4845  df-iota 5994  df-fv 6039  df-cgr3 32479
This theorem is referenced by:  cgr3permute3  32485  cgr3permute1  32486  cgr3tr4  32490  cgr3com  32491  cgr3rflx  32492  cgrxfr  32493  btwnxfr  32494  lineext  32514  brofs2  32515  brifs2  32516  endofsegid  32523  btwnconn1lem4  32528  btwnconn1lem8  32532  btwnconn1lem11  32535  brsegle2  32547  seglecgr12im  32548  segletr  32552
  Copyright terms: Public domain W3C validator