MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brcgr Structured version   Visualization version   GIF version

Theorem brcgr 25825
Description: The binary relation form of the congruence predicate. The statement 𝐴, 𝐵⟩Cgr⟨𝐶, 𝐷 should be read informally as "the 𝑁 dimensional point 𝐴 is as far from 𝐵 as 𝐶 is from 𝐷, or "the line segment 𝐴𝐵 is congruent to the line segment 𝐶𝐷. This particular definition is encapsulated by Tarski's axioms later on. (Contributed by Scott Fenton, 3-Jun-2013.)
Assertion
Ref Expression
brcgr (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐷⟩ ↔ Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
Distinct variable groups:   𝑖,𝑁   𝐴,𝑖   𝐵,𝑖   𝐶,𝑖   𝐷,𝑖

Proof of Theorem brcgr
Dummy variables 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opex 4962 . . 3 𝐴, 𝐵⟩ ∈ V
2 opex 4962 . . 3 𝐶, 𝐷⟩ ∈ V
3 eleq1 2718 . . . . . 6 (𝑥 = ⟨𝐴, 𝐵⟩ → (𝑥 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ↔ ⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))))
43anbi1d 741 . . . . 5 (𝑥 = ⟨𝐴, 𝐵⟩ → ((𝑥 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ↔ (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)))))
5 fveq2 6229 . . . . . . . . . 10 (𝑥 = ⟨𝐴, 𝐵⟩ → (1st𝑥) = (1st ‘⟨𝐴, 𝐵⟩))
65fveq1d 6231 . . . . . . . . 9 (𝑥 = ⟨𝐴, 𝐵⟩ → ((1st𝑥)‘𝑖) = ((1st ‘⟨𝐴, 𝐵⟩)‘𝑖))
7 fveq2 6229 . . . . . . . . . 10 (𝑥 = ⟨𝐴, 𝐵⟩ → (2nd𝑥) = (2nd ‘⟨𝐴, 𝐵⟩))
87fveq1d 6231 . . . . . . . . 9 (𝑥 = ⟨𝐴, 𝐵⟩ → ((2nd𝑥)‘𝑖) = ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))
96, 8oveq12d 6708 . . . . . . . 8 (𝑥 = ⟨𝐴, 𝐵⟩ → (((1st𝑥)‘𝑖) − ((2nd𝑥)‘𝑖)) = (((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖)))
109oveq1d 6705 . . . . . . 7 (𝑥 = ⟨𝐴, 𝐵⟩ → ((((1st𝑥)‘𝑖) − ((2nd𝑥)‘𝑖))↑2) = ((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2))
1110sumeq2sdv 14479 . . . . . 6 (𝑥 = ⟨𝐴, 𝐵⟩ → Σ𝑖 ∈ (1...𝑛)((((1st𝑥)‘𝑖) − ((2nd𝑥)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2))
1211eqeq1d 2653 . . . . 5 (𝑥 = ⟨𝐴, 𝐵⟩ → (Σ𝑖 ∈ (1...𝑛)((((1st𝑥)‘𝑖) − ((2nd𝑥)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st𝑦)‘𝑖) − ((2nd𝑦)‘𝑖))↑2) ↔ Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st𝑦)‘𝑖) − ((2nd𝑦)‘𝑖))↑2)))
134, 12anbi12d 747 . . . 4 (𝑥 = ⟨𝐴, 𝐵⟩ → (((𝑥 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st𝑥)‘𝑖) − ((2nd𝑥)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st𝑦)‘𝑖) − ((2nd𝑦)‘𝑖))↑2)) ↔ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st𝑦)‘𝑖) − ((2nd𝑦)‘𝑖))↑2))))
1413rexbidv 3081 . . 3 (𝑥 = ⟨𝐴, 𝐵⟩ → (∃𝑛 ∈ ℕ ((𝑥 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st𝑥)‘𝑖) − ((2nd𝑥)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st𝑦)‘𝑖) − ((2nd𝑦)‘𝑖))↑2)) ↔ ∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st𝑦)‘𝑖) − ((2nd𝑦)‘𝑖))↑2))))
15 eleq1 2718 . . . . . 6 (𝑦 = ⟨𝐶, 𝐷⟩ → (𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ↔ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))))
1615anbi2d 740 . . . . 5 (𝑦 = ⟨𝐶, 𝐷⟩ → ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ↔ (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)))))
17 fveq2 6229 . . . . . . . . . 10 (𝑦 = ⟨𝐶, 𝐷⟩ → (1st𝑦) = (1st ‘⟨𝐶, 𝐷⟩))
1817fveq1d 6231 . . . . . . . . 9 (𝑦 = ⟨𝐶, 𝐷⟩ → ((1st𝑦)‘𝑖) = ((1st ‘⟨𝐶, 𝐷⟩)‘𝑖))
19 fveq2 6229 . . . . . . . . . 10 (𝑦 = ⟨𝐶, 𝐷⟩ → (2nd𝑦) = (2nd ‘⟨𝐶, 𝐷⟩))
2019fveq1d 6231 . . . . . . . . 9 (𝑦 = ⟨𝐶, 𝐷⟩ → ((2nd𝑦)‘𝑖) = ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))
2118, 20oveq12d 6708 . . . . . . . 8 (𝑦 = ⟨𝐶, 𝐷⟩ → (((1st𝑦)‘𝑖) − ((2nd𝑦)‘𝑖)) = (((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖)))
2221oveq1d 6705 . . . . . . 7 (𝑦 = ⟨𝐶, 𝐷⟩ → ((((1st𝑦)‘𝑖) − ((2nd𝑦)‘𝑖))↑2) = ((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2))
2322sumeq2sdv 14479 . . . . . 6 (𝑦 = ⟨𝐶, 𝐷⟩ → Σ𝑖 ∈ (1...𝑛)((((1st𝑦)‘𝑖) − ((2nd𝑦)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2))
2423eqeq2d 2661 . . . . 5 (𝑦 = ⟨𝐶, 𝐷⟩ → (Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st𝑦)‘𝑖) − ((2nd𝑦)‘𝑖))↑2) ↔ Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2)))
2516, 24anbi12d 747 . . . 4 (𝑦 = ⟨𝐶, 𝐷⟩ → (((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st𝑦)‘𝑖) − ((2nd𝑦)‘𝑖))↑2)) ↔ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2))))
2625rexbidv 3081 . . 3 (𝑦 = ⟨𝐶, 𝐷⟩ → (∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st𝑦)‘𝑖) − ((2nd𝑦)‘𝑖))↑2)) ↔ ∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2))))
27 df-cgr 25818 . . 3 Cgr = {⟨𝑥, 𝑦⟩ ∣ ∃𝑛 ∈ ℕ ((𝑥 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st𝑥)‘𝑖) − ((2nd𝑥)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st𝑦)‘𝑖) − ((2nd𝑦)‘𝑖))↑2))}
281, 2, 14, 26, 27brab 5027 . 2 (⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐷⟩ ↔ ∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2)))
29 opelxp2 5185 . . . . . . . . . . 11 (⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) → 𝐷 ∈ (𝔼‘𝑛))
3029ad2antll 765 . . . . . . . . . 10 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)))) → 𝐷 ∈ (𝔼‘𝑛))
31 simplrr 818 . . . . . . . . . 10 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)))) → 𝐷 ∈ (𝔼‘𝑁))
32 eedimeq 25823 . . . . . . . . . 10 ((𝐷 ∈ (𝔼‘𝑛) ∧ 𝐷 ∈ (𝔼‘𝑁)) → 𝑛 = 𝑁)
3330, 31, 32syl2anc 694 . . . . . . . . 9 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)))) → 𝑛 = 𝑁)
3433adantlr 751 . . . . . . . 8 (((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)))) → 𝑛 = 𝑁)
35 oveq2 6698 . . . . . . . . . 10 (𝑛 = 𝑁 → (1...𝑛) = (1...𝑁))
3635sumeq1d 14475 . . . . . . . . 9 (𝑛 = 𝑁 → Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2))
3735sumeq1d 14475 . . . . . . . . 9 (𝑛 = 𝑁 → Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2))
3836, 37eqeq12d 2666 . . . . . . . 8 (𝑛 = 𝑁 → (Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2) ↔ Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2)))
3934, 38syl 17 . . . . . . 7 (((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)))) → (Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2) ↔ Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2)))
40 op1stg 7222 . . . . . . . . . . . . 13 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
4140fveq1d 6231 . . . . . . . . . . . 12 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → ((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) = (𝐴𝑖))
42 op2ndg 7223 . . . . . . . . . . . . 13 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
4342fveq1d 6231 . . . . . . . . . . . 12 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖) = (𝐵𝑖))
4441, 43oveq12d 6708 . . . . . . . . . . 11 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖)) = ((𝐴𝑖) − (𝐵𝑖)))
4544oveq1d 6705 . . . . . . . . . 10 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → ((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = (((𝐴𝑖) − (𝐵𝑖))↑2))
4645sumeq2sdv 14479 . . . . . . . . 9 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2))
47 op1stg 7222 . . . . . . . . . . . . 13 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → (1st ‘⟨𝐶, 𝐷⟩) = 𝐶)
4847fveq1d 6231 . . . . . . . . . . . 12 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → ((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) = (𝐶𝑖))
49 op2ndg 7223 . . . . . . . . . . . . 13 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → (2nd ‘⟨𝐶, 𝐷⟩) = 𝐷)
5049fveq1d 6231 . . . . . . . . . . . 12 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖) = (𝐷𝑖))
5148, 50oveq12d 6708 . . . . . . . . . . 11 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → (((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖)) = ((𝐶𝑖) − (𝐷𝑖)))
5251oveq1d 6705 . . . . . . . . . 10 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → ((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2) = (((𝐶𝑖) − (𝐷𝑖))↑2))
5352sumeq2sdv 14479 . . . . . . . . 9 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2))
5446, 53eqeqan12d 2667 . . . . . . . 8 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2) ↔ Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
5554ad2antrr 762 . . . . . . 7 (((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)))) → (Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2) ↔ Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
5639, 55bitrd 268 . . . . . 6 (((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)))) → (Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2) ↔ Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
5756biimpd 219 . . . . 5 (((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)))) → (Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2) → Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
5857expimpd 628 . . . 4 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) → (((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2)) → Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
5958rexlimdva 3060 . . 3 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2)) → Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
60 eleenn 25821 . . . . 5 (𝐷 ∈ (𝔼‘𝑁) → 𝑁 ∈ ℕ)
6160ad2antll 765 . . . 4 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ)
62 opelxpi 5182 . . . . . . . . 9 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → ⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)))
63 opelxpi 5182 . . . . . . . . 9 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)))
6462, 63anim12i 589 . . . . . . . 8 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁))))
6564adantr 480 . . . . . . 7 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)) → (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁))))
6654biimpar 501 . . . . . . 7 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)) → Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2))
6765, 66jca 553 . . . . . 6 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)) → ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁))) ∧ Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2)))
68 fveq2 6229 . . . . . . . . . . 11 (𝑛 = 𝑁 → (𝔼‘𝑛) = (𝔼‘𝑁))
6968sqxpeqd 5175 . . . . . . . . . 10 (𝑛 = 𝑁 → ((𝔼‘𝑛) × (𝔼‘𝑛)) = ((𝔼‘𝑁) × (𝔼‘𝑁)))
7069eleq2d 2716 . . . . . . . . 9 (𝑛 = 𝑁 → (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ↔ ⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁))))
7169eleq2d 2716 . . . . . . . . 9 (𝑛 = 𝑁 → (⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ↔ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁))))
7270, 71anbi12d 747 . . . . . . . 8 (𝑛 = 𝑁 → ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ↔ (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)))))
7372, 38anbi12d 747 . . . . . . 7 (𝑛 = 𝑁 → (((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2)) ↔ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁))) ∧ Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2))))
7473rspcev 3340 . . . . . 6 ((𝑁 ∈ ℕ ∧ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁))) ∧ Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2))) → ∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2)))
7567, 74sylan2 490 . . . . 5 ((𝑁 ∈ ℕ ∧ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2))) → ∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2)))
7675exp32 630 . . . 4 (𝑁 ∈ ℕ → (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2) → ∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2)))))
7761, 76mpcom 38 . . 3 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2) → ∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2))))
7859, 77impbid 202 . 2 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐴, 𝐵⟩)‘𝑖) − ((2nd ‘⟨𝐴, 𝐵⟩)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘⟨𝐶, 𝐷⟩)‘𝑖) − ((2nd ‘⟨𝐶, 𝐷⟩)‘𝑖))↑2)) ↔ Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
7928, 78syl5bb 272 1 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐷⟩ ↔ Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wrex 2942  cop 4216   class class class wbr 4685   × cxp 5141  cfv 5926  (class class class)co 6690  1st c1st 7208  2nd c2nd 7209  1c1 9975  cmin 10304  cn 11058  2c2 11108  ...cfz 12364  cexp 12900  Σcsu 14460  𝔼cee 25813  Cgrccgr 25815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-seq 12842  df-sum 14461  df-ee 25816  df-cgr 25818
This theorem is referenced by:  axcgrrflx  25839  axcgrtr  25840  axcgrid  25841  axsegcon  25852  ax5seglem3  25856  ax5seglem6  25859  ax5seg  25863  axlowdimlem17  25883  ecgrtg  25908
  Copyright terms: Public domain W3C validator