MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brbtwn Structured version   Visualization version   GIF version

Theorem brbtwn 25760
Description: The binary relationship form of the betweenness predicate. The statement 𝐴 Btwn ⟨𝐵, 𝐶 should be informally read as "𝐴 lies on a line segment between 𝐵 and 𝐶. This exact definition is abstracted away by Tarski's geometry axioms later on. (Contributed by Scott Fenton, 3-Jun-2013.)
Assertion
Ref Expression
brbtwn ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐴 Btwn ⟨𝐵, 𝐶⟩ ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
Distinct variable groups:   𝑖,𝑁,𝑡   𝐴,𝑖,𝑡   𝐵,𝑖,𝑡   𝐶,𝑖,𝑡

Proof of Theorem brbtwn
Dummy variables 𝑥 𝑦 𝑧 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-btwn 25753 . . 3 Btwn = {⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝑦𝑖)) + (𝑡 · (𝑧𝑖))))}
21breqi 4650 . 2 (𝐴 Btwn ⟨𝐵, 𝐶⟩ ↔ 𝐴{⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝑦𝑖)) + (𝑡 · (𝑧𝑖))))}⟨𝐵, 𝐶⟩)
3 opex 4923 . . . . 5 𝐵, 𝐶⟩ ∈ V
4 brcnvg 5292 . . . . 5 ((𝐴 ∈ (𝔼‘𝑁) ∧ ⟨𝐵, 𝐶⟩ ∈ V) → (𝐴{⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝑦𝑖)) + (𝑡 · (𝑧𝑖))))}⟨𝐵, 𝐶⟩ ↔ ⟨𝐵, 𝐶⟩{⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝑦𝑖)) + (𝑡 · (𝑧𝑖))))}𝐴))
53, 4mpan2 706 . . . 4 (𝐴 ∈ (𝔼‘𝑁) → (𝐴{⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝑦𝑖)) + (𝑡 · (𝑧𝑖))))}⟨𝐵, 𝐶⟩ ↔ ⟨𝐵, 𝐶⟩{⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝑦𝑖)) + (𝑡 · (𝑧𝑖))))}𝐴))
653ad2ant1 1080 . . 3 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐴{⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝑦𝑖)) + (𝑡 · (𝑧𝑖))))}⟨𝐵, 𝐶⟩ ↔ ⟨𝐵, 𝐶⟩{⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝑦𝑖)) + (𝑡 · (𝑧𝑖))))}𝐴))
7 df-br 4645 . . . 4 (⟨𝐵, 𝐶⟩{⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝑦𝑖)) + (𝑡 · (𝑧𝑖))))}𝐴 ↔ ⟨⟨𝐵, 𝐶⟩, 𝐴⟩ ∈ {⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝑦𝑖)) + (𝑡 · (𝑧𝑖))))})
8 eleq1 2687 . . . . . . . . . 10 (𝑦 = 𝐵 → (𝑦 ∈ (𝔼‘𝑛) ↔ 𝐵 ∈ (𝔼‘𝑛)))
983anbi1d 1401 . . . . . . . . 9 (𝑦 = 𝐵 → ((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ↔ (𝐵 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛))))
10 fveq1 6177 . . . . . . . . . . . . 13 (𝑦 = 𝐵 → (𝑦𝑖) = (𝐵𝑖))
1110oveq2d 6651 . . . . . . . . . . . 12 (𝑦 = 𝐵 → ((1 − 𝑡) · (𝑦𝑖)) = ((1 − 𝑡) · (𝐵𝑖)))
1211oveq1d 6650 . . . . . . . . . . 11 (𝑦 = 𝐵 → (((1 − 𝑡) · (𝑦𝑖)) + (𝑡 · (𝑧𝑖))) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝑧𝑖))))
1312eqeq2d 2630 . . . . . . . . . 10 (𝑦 = 𝐵 → ((𝑥𝑖) = (((1 − 𝑡) · (𝑦𝑖)) + (𝑡 · (𝑧𝑖))) ↔ (𝑥𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝑧𝑖)))))
1413rexralbidv 3054 . . . . . . . . 9 (𝑦 = 𝐵 → (∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝑦𝑖)) + (𝑡 · (𝑧𝑖))) ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝑧𝑖)))))
159, 14anbi12d 746 . . . . . . . 8 (𝑦 = 𝐵 → (((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝑦𝑖)) + (𝑡 · (𝑧𝑖)))) ↔ ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝑧𝑖))))))
1615rexbidv 3048 . . . . . . 7 (𝑦 = 𝐵 → (∃𝑛 ∈ ℕ ((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝑦𝑖)) + (𝑡 · (𝑧𝑖)))) ↔ ∃𝑛 ∈ ℕ ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝑧𝑖))))))
17 eleq1 2687 . . . . . . . . . 10 (𝑧 = 𝐶 → (𝑧 ∈ (𝔼‘𝑛) ↔ 𝐶 ∈ (𝔼‘𝑛)))
18173anbi2d 1402 . . . . . . . . 9 (𝑧 = 𝐶 → ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ↔ (𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛))))
19 fveq1 6177 . . . . . . . . . . . . 13 (𝑧 = 𝐶 → (𝑧𝑖) = (𝐶𝑖))
2019oveq2d 6651 . . . . . . . . . . . 12 (𝑧 = 𝐶 → (𝑡 · (𝑧𝑖)) = (𝑡 · (𝐶𝑖)))
2120oveq2d 6651 . . . . . . . . . . 11 (𝑧 = 𝐶 → (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝑧𝑖))) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))
2221eqeq2d 2630 . . . . . . . . . 10 (𝑧 = 𝐶 → ((𝑥𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝑧𝑖))) ↔ (𝑥𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
2322rexralbidv 3054 . . . . . . . . 9 (𝑧 = 𝐶 → (∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝑧𝑖))) ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
2418, 23anbi12d 746 . . . . . . . 8 (𝑧 = 𝐶 → (((𝐵 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝑧𝑖)))) ↔ ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))))
2524rexbidv 3048 . . . . . . 7 (𝑧 = 𝐶 → (∃𝑛 ∈ ℕ ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝑧𝑖)))) ↔ ∃𝑛 ∈ ℕ ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))))
26 eleq1 2687 . . . . . . . . . 10 (𝑥 = 𝐴 → (𝑥 ∈ (𝔼‘𝑛) ↔ 𝐴 ∈ (𝔼‘𝑛)))
27263anbi3d 1403 . . . . . . . . 9 (𝑥 = 𝐴 → ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ↔ (𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛))))
28 fveq1 6177 . . . . . . . . . . 11 (𝑥 = 𝐴 → (𝑥𝑖) = (𝐴𝑖))
2928eqeq1d 2622 . . . . . . . . . 10 (𝑥 = 𝐴 → ((𝑥𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) ↔ (𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
3029rexralbidv 3054 . . . . . . . . 9 (𝑥 = 𝐴 → (∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
3127, 30anbi12d 746 . . . . . . . 8 (𝑥 = 𝐴 → (((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) ↔ ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))))
3231rexbidv 3048 . . . . . . 7 (𝑥 = 𝐴 → (∃𝑛 ∈ ℕ ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) ↔ ∃𝑛 ∈ ℕ ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))))
3316, 25, 32eloprabg 6733 . . . . . 6 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) → (⟨⟨𝐵, 𝐶⟩, 𝐴⟩ ∈ {⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝑦𝑖)) + (𝑡 · (𝑧𝑖))))} ↔ ∃𝑛 ∈ ℕ ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))))
34 simp1 1059 . . . . . . . . . . . 12 ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛)) → 𝐵 ∈ (𝔼‘𝑛))
35 simp1 1059 . . . . . . . . . . . 12 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) → 𝐵 ∈ (𝔼‘𝑁))
36 eedimeq 25759 . . . . . . . . . . . 12 ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 𝑛 = 𝑁)
3734, 35, 36syl2anr 495 . . . . . . . . . . 11 (((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛))) → 𝑛 = 𝑁)
38 oveq2 6643 . . . . . . . . . . . . 13 (𝑛 = 𝑁 → (1...𝑛) = (1...𝑁))
3938raleqdv 3139 . . . . . . . . . . . 12 (𝑛 = 𝑁 → (∀𝑖 ∈ (1...𝑛)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
4039rexbidv 3048 . . . . . . . . . . 11 (𝑛 = 𝑁 → (∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
4137, 40syl 17 . . . . . . . . . 10 (((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛))) → (∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
4241biimpd 219 . . . . . . . . 9 (((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛))) → (∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) → ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
4342expimpd 628 . . . . . . . 8 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) → (((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) → ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
4443rexlimdvw 3030 . . . . . . 7 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) → (∃𝑛 ∈ ℕ ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) → ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
45 eleenn 25757 . . . . . . . . 9 (𝐵 ∈ (𝔼‘𝑁) → 𝑁 ∈ ℕ)
46453ad2ant1 1080 . . . . . . . 8 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) → 𝑁 ∈ ℕ)
47 fveq2 6178 . . . . . . . . . . . . 13 (𝑛 = 𝑁 → (𝔼‘𝑛) = (𝔼‘𝑁))
4847eleq2d 2685 . . . . . . . . . . . 12 (𝑛 = 𝑁 → (𝐵 ∈ (𝔼‘𝑛) ↔ 𝐵 ∈ (𝔼‘𝑁)))
4947eleq2d 2685 . . . . . . . . . . . 12 (𝑛 = 𝑁 → (𝐶 ∈ (𝔼‘𝑛) ↔ 𝐶 ∈ (𝔼‘𝑁)))
5047eleq2d 2685 . . . . . . . . . . . 12 (𝑛 = 𝑁 → (𝐴 ∈ (𝔼‘𝑛) ↔ 𝐴 ∈ (𝔼‘𝑁)))
5148, 49, 503anbi123d 1397 . . . . . . . . . . 11 (𝑛 = 𝑁 → ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛)) ↔ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁))))
5251, 40anbi12d 746 . . . . . . . . . 10 (𝑛 = 𝑁 → (((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) ↔ ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))))
5352rspcev 3304 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))) → ∃𝑛 ∈ ℕ ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
5453exp32 630 . . . . . . . 8 (𝑁 ∈ ℕ → ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) → (∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) → ∃𝑛 ∈ ℕ ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))))
5546, 54mpcom 38 . . . . . . 7 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) → (∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) → ∃𝑛 ∈ ℕ ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))))
5644, 55impbid 202 . . . . . 6 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) → (∃𝑛 ∈ ℕ ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
5733, 56bitrd 268 . . . . 5 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) → (⟨⟨𝐵, 𝐶⟩, 𝐴⟩ ∈ {⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝑦𝑖)) + (𝑡 · (𝑧𝑖))))} ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
58573comr 1271 . . . 4 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (⟨⟨𝐵, 𝐶⟩, 𝐴⟩ ∈ {⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝑦𝑖)) + (𝑡 · (𝑧𝑖))))} ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
597, 58syl5bb 272 . . 3 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (⟨𝐵, 𝐶⟩{⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝑦𝑖)) + (𝑡 · (𝑧𝑖))))}𝐴 ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
606, 59bitrd 268 . 2 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐴{⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝑦𝑖)) + (𝑡 · (𝑧𝑖))))}⟨𝐵, 𝐶⟩ ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
612, 60syl5bb 272 1 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐴 Btwn ⟨𝐵, 𝐶⟩ ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1481  wcel 1988  wral 2909  wrex 2910  Vcvv 3195  cop 4174   class class class wbr 4644  ccnv 5103  cfv 5876  (class class class)co 6635  {coprab 6636  0cc0 9921  1c1 9922   + caddc 9924   · cmul 9926  cmin 10251  cn 11005  [,]cicc 12163  ...cfz 12311  𝔼cee 25749   Btwn cbtwn 25750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-1st 7153  df-2nd 7154  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-er 7727  df-map 7844  df-en 7941  df-dom 7942  df-sdom 7943  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-nn 11006  df-z 11363  df-uz 11673  df-fz 12312  df-ee 25752  df-btwn 25753
This theorem is referenced by:  brbtwn2  25766  axsegcon  25788  ax5seg  25799  axbtwnid  25800  axpasch  25802  axeuclid  25824  axcontlem2  25826  axcontlem4  25828  axcontlem7  25831  axcontlem8  25832
  Copyright terms: Public domain W3C validator