MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brbtwn Structured version   Visualization version   GIF version

Theorem brbtwn 26000
Description: The binary relation form of the betweenness predicate. The statement 𝐴 Btwn ⟨𝐵, 𝐶 should be informally read as "𝐴 lies on a line segment between 𝐵 and 𝐶. This exact definition is abstracted away by Tarski's geometry axioms later on. (Contributed by Scott Fenton, 3-Jun-2013.)
Assertion
Ref Expression
brbtwn ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐴 Btwn ⟨𝐵, 𝐶⟩ ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
Distinct variable groups:   𝑖,𝑁,𝑡   𝐴,𝑖,𝑡   𝐵,𝑖,𝑡   𝐶,𝑖,𝑡

Proof of Theorem brbtwn
Dummy variables 𝑥 𝑦 𝑧 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-btwn 25993 . . 3 Btwn = {⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝑦𝑖)) + (𝑡 · (𝑧𝑖))))}
21breqi 4792 . 2 (𝐴 Btwn ⟨𝐵, 𝐶⟩ ↔ 𝐴{⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝑦𝑖)) + (𝑡 · (𝑧𝑖))))}⟨𝐵, 𝐶⟩)
3 opex 5060 . . . . 5 𝐵, 𝐶⟩ ∈ V
4 brcnvg 5441 . . . . 5 ((𝐴 ∈ (𝔼‘𝑁) ∧ ⟨𝐵, 𝐶⟩ ∈ V) → (𝐴{⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝑦𝑖)) + (𝑡 · (𝑧𝑖))))}⟨𝐵, 𝐶⟩ ↔ ⟨𝐵, 𝐶⟩{⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝑦𝑖)) + (𝑡 · (𝑧𝑖))))}𝐴))
53, 4mpan2 671 . . . 4 (𝐴 ∈ (𝔼‘𝑁) → (𝐴{⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝑦𝑖)) + (𝑡 · (𝑧𝑖))))}⟨𝐵, 𝐶⟩ ↔ ⟨𝐵, 𝐶⟩{⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝑦𝑖)) + (𝑡 · (𝑧𝑖))))}𝐴))
653ad2ant1 1127 . . 3 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐴{⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝑦𝑖)) + (𝑡 · (𝑧𝑖))))}⟨𝐵, 𝐶⟩ ↔ ⟨𝐵, 𝐶⟩{⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝑦𝑖)) + (𝑡 · (𝑧𝑖))))}𝐴))
7 df-br 4787 . . . 4 (⟨𝐵, 𝐶⟩{⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝑦𝑖)) + (𝑡 · (𝑧𝑖))))}𝐴 ↔ ⟨⟨𝐵, 𝐶⟩, 𝐴⟩ ∈ {⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝑦𝑖)) + (𝑡 · (𝑧𝑖))))})
8 eleq1 2838 . . . . . . . . . 10 (𝑦 = 𝐵 → (𝑦 ∈ (𝔼‘𝑛) ↔ 𝐵 ∈ (𝔼‘𝑛)))
983anbi1d 1551 . . . . . . . . 9 (𝑦 = 𝐵 → ((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ↔ (𝐵 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛))))
10 fveq1 6331 . . . . . . . . . . . . 13 (𝑦 = 𝐵 → (𝑦𝑖) = (𝐵𝑖))
1110oveq2d 6809 . . . . . . . . . . . 12 (𝑦 = 𝐵 → ((1 − 𝑡) · (𝑦𝑖)) = ((1 − 𝑡) · (𝐵𝑖)))
1211oveq1d 6808 . . . . . . . . . . 11 (𝑦 = 𝐵 → (((1 − 𝑡) · (𝑦𝑖)) + (𝑡 · (𝑧𝑖))) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝑧𝑖))))
1312eqeq2d 2781 . . . . . . . . . 10 (𝑦 = 𝐵 → ((𝑥𝑖) = (((1 − 𝑡) · (𝑦𝑖)) + (𝑡 · (𝑧𝑖))) ↔ (𝑥𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝑧𝑖)))))
1413rexralbidv 3206 . . . . . . . . 9 (𝑦 = 𝐵 → (∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝑦𝑖)) + (𝑡 · (𝑧𝑖))) ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝑧𝑖)))))
159, 14anbi12d 616 . . . . . . . 8 (𝑦 = 𝐵 → (((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝑦𝑖)) + (𝑡 · (𝑧𝑖)))) ↔ ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝑧𝑖))))))
1615rexbidv 3200 . . . . . . 7 (𝑦 = 𝐵 → (∃𝑛 ∈ ℕ ((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝑦𝑖)) + (𝑡 · (𝑧𝑖)))) ↔ ∃𝑛 ∈ ℕ ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝑧𝑖))))))
17 eleq1 2838 . . . . . . . . . 10 (𝑧 = 𝐶 → (𝑧 ∈ (𝔼‘𝑛) ↔ 𝐶 ∈ (𝔼‘𝑛)))
18173anbi2d 1552 . . . . . . . . 9 (𝑧 = 𝐶 → ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ↔ (𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛))))
19 fveq1 6331 . . . . . . . . . . . . 13 (𝑧 = 𝐶 → (𝑧𝑖) = (𝐶𝑖))
2019oveq2d 6809 . . . . . . . . . . . 12 (𝑧 = 𝐶 → (𝑡 · (𝑧𝑖)) = (𝑡 · (𝐶𝑖)))
2120oveq2d 6809 . . . . . . . . . . 11 (𝑧 = 𝐶 → (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝑧𝑖))) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))
2221eqeq2d 2781 . . . . . . . . . 10 (𝑧 = 𝐶 → ((𝑥𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝑧𝑖))) ↔ (𝑥𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
2322rexralbidv 3206 . . . . . . . . 9 (𝑧 = 𝐶 → (∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝑧𝑖))) ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
2418, 23anbi12d 616 . . . . . . . 8 (𝑧 = 𝐶 → (((𝐵 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝑧𝑖)))) ↔ ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))))
2524rexbidv 3200 . . . . . . 7 (𝑧 = 𝐶 → (∃𝑛 ∈ ℕ ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝑧𝑖)))) ↔ ∃𝑛 ∈ ℕ ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))))
26 eleq1 2838 . . . . . . . . . 10 (𝑥 = 𝐴 → (𝑥 ∈ (𝔼‘𝑛) ↔ 𝐴 ∈ (𝔼‘𝑛)))
27263anbi3d 1553 . . . . . . . . 9 (𝑥 = 𝐴 → ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ↔ (𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛))))
28 fveq1 6331 . . . . . . . . . . 11 (𝑥 = 𝐴 → (𝑥𝑖) = (𝐴𝑖))
2928eqeq1d 2773 . . . . . . . . . 10 (𝑥 = 𝐴 → ((𝑥𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) ↔ (𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
3029rexralbidv 3206 . . . . . . . . 9 (𝑥 = 𝐴 → (∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
3127, 30anbi12d 616 . . . . . . . 8 (𝑥 = 𝐴 → (((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) ↔ ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))))
3231rexbidv 3200 . . . . . . 7 (𝑥 = 𝐴 → (∃𝑛 ∈ ℕ ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) ↔ ∃𝑛 ∈ ℕ ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))))
3316, 25, 32eloprabg 6895 . . . . . 6 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) → (⟨⟨𝐵, 𝐶⟩, 𝐴⟩ ∈ {⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝑦𝑖)) + (𝑡 · (𝑧𝑖))))} ↔ ∃𝑛 ∈ ℕ ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))))
34 simp1 1130 . . . . . . . . . . . 12 ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛)) → 𝐵 ∈ (𝔼‘𝑛))
35 simp1 1130 . . . . . . . . . . . 12 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) → 𝐵 ∈ (𝔼‘𝑁))
36 eedimeq 25999 . . . . . . . . . . . 12 ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 𝑛 = 𝑁)
3734, 35, 36syl2anr 584 . . . . . . . . . . 11 (((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛))) → 𝑛 = 𝑁)
38 oveq2 6801 . . . . . . . . . . . . 13 (𝑛 = 𝑁 → (1...𝑛) = (1...𝑁))
3938raleqdv 3293 . . . . . . . . . . . 12 (𝑛 = 𝑁 → (∀𝑖 ∈ (1...𝑛)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
4039rexbidv 3200 . . . . . . . . . . 11 (𝑛 = 𝑁 → (∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
4137, 40syl 17 . . . . . . . . . 10 (((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛))) → (∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
4241biimpd 219 . . . . . . . . 9 (((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛))) → (∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) → ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
4342expimpd 441 . . . . . . . 8 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) → (((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) → ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
4443rexlimdvw 3182 . . . . . . 7 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) → (∃𝑛 ∈ ℕ ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) → ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
45 eleenn 25997 . . . . . . . . 9 (𝐵 ∈ (𝔼‘𝑁) → 𝑁 ∈ ℕ)
46453ad2ant1 1127 . . . . . . . 8 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) → 𝑁 ∈ ℕ)
47 fveq2 6332 . . . . . . . . . . . . 13 (𝑛 = 𝑁 → (𝔼‘𝑛) = (𝔼‘𝑁))
4847eleq2d 2836 . . . . . . . . . . . 12 (𝑛 = 𝑁 → (𝐵 ∈ (𝔼‘𝑛) ↔ 𝐵 ∈ (𝔼‘𝑁)))
4947eleq2d 2836 . . . . . . . . . . . 12 (𝑛 = 𝑁 → (𝐶 ∈ (𝔼‘𝑛) ↔ 𝐶 ∈ (𝔼‘𝑁)))
5047eleq2d 2836 . . . . . . . . . . . 12 (𝑛 = 𝑁 → (𝐴 ∈ (𝔼‘𝑛) ↔ 𝐴 ∈ (𝔼‘𝑁)))
5148, 49, 503anbi123d 1547 . . . . . . . . . . 11 (𝑛 = 𝑁 → ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛)) ↔ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁))))
5251, 40anbi12d 616 . . . . . . . . . 10 (𝑛 = 𝑁 → (((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) ↔ ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))))
5352rspcev 3460 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))) → ∃𝑛 ∈ ℕ ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
5453exp32 407 . . . . . . . 8 (𝑁 ∈ ℕ → ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) → (∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) → ∃𝑛 ∈ ℕ ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))))
5546, 54mpcom 38 . . . . . . 7 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) → (∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) → ∃𝑛 ∈ ℕ ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))))
5644, 55impbid 202 . . . . . 6 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) → (∃𝑛 ∈ ℕ ((𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
5733, 56bitrd 268 . . . . 5 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) → (⟨⟨𝐵, 𝐶⟩, 𝐴⟩ ∈ {⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝑦𝑖)) + (𝑡 · (𝑧𝑖))))} ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
58573comr 1119 . . . 4 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (⟨⟨𝐵, 𝐶⟩, 𝐴⟩ ∈ {⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝑦𝑖)) + (𝑡 · (𝑧𝑖))))} ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
597, 58syl5bb 272 . . 3 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (⟨𝐵, 𝐶⟩{⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝑦𝑖)) + (𝑡 · (𝑧𝑖))))}𝐴 ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
606, 59bitrd 268 . 2 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐴{⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑦 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑥 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑥𝑖) = (((1 − 𝑡) · (𝑦𝑖)) + (𝑡 · (𝑧𝑖))))}⟨𝐵, 𝐶⟩ ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
612, 60syl5bb 272 1 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐴 Btwn ⟨𝐵, 𝐶⟩ ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  wral 3061  wrex 3062  Vcvv 3351  cop 4322   class class class wbr 4786  ccnv 5248  cfv 6031  (class class class)co 6793  {coprab 6794  0cc0 10138  1c1 10139   + caddc 10141   · cmul 10143  cmin 10468  cn 11222  [,]cicc 12383  ...cfz 12533  𝔼cee 25989   Btwn cbtwn 25990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-er 7896  df-map 8011  df-en 8110  df-dom 8111  df-sdom 8112  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-z 11580  df-uz 11889  df-fz 12534  df-ee 25992  df-btwn 25993
This theorem is referenced by:  brbtwn2  26006  axsegcon  26028  ax5seg  26039  axbtwnid  26040  axpasch  26042  axeuclid  26064  axcontlem2  26066  axcontlem4  26068  axcontlem7  26071  axcontlem8  26072
  Copyright terms: Public domain W3C validator