![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > bralnfn | Structured version Visualization version GIF version |
Description: The Dirac bra function is a linear functional. (Contributed by NM, 23-May-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bralnfn | ⊢ (𝐴 ∈ ℋ → (bra‘𝐴) ∈ LinFn) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brafn 29146 | . 2 ⊢ (𝐴 ∈ ℋ → (bra‘𝐴): ℋ⟶ℂ) | |
2 | simpll 750 | . . . . . 6 ⊢ (((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ)) → 𝐴 ∈ ℋ) | |
3 | hvmulcl 28210 | . . . . . . 7 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ℎ 𝑦) ∈ ℋ) | |
4 | 3 | ad2ant2lr 742 | . . . . . 6 ⊢ (((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ)) → (𝑥 ·ℎ 𝑦) ∈ ℋ) |
5 | simprr 756 | . . . . . 6 ⊢ (((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ)) → 𝑧 ∈ ℋ) | |
6 | braadd 29144 | . . . . . 6 ⊢ ((𝐴 ∈ ℋ ∧ (𝑥 ·ℎ 𝑦) ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((bra‘𝐴)‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = (((bra‘𝐴)‘(𝑥 ·ℎ 𝑦)) + ((bra‘𝐴)‘𝑧))) | |
7 | 2, 4, 5, 6 | syl3anc 1476 | . . . . 5 ⊢ (((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ)) → ((bra‘𝐴)‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = (((bra‘𝐴)‘(𝑥 ·ℎ 𝑦)) + ((bra‘𝐴)‘𝑧))) |
8 | bramul 29145 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → ((bra‘𝐴)‘(𝑥 ·ℎ 𝑦)) = (𝑥 · ((bra‘𝐴)‘𝑦))) | |
9 | 8 | 3expa 1111 | . . . . . . 7 ⊢ (((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℋ) → ((bra‘𝐴)‘(𝑥 ·ℎ 𝑦)) = (𝑥 · ((bra‘𝐴)‘𝑦))) |
10 | 9 | adantrr 696 | . . . . . 6 ⊢ (((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ)) → ((bra‘𝐴)‘(𝑥 ·ℎ 𝑦)) = (𝑥 · ((bra‘𝐴)‘𝑦))) |
11 | 10 | oveq1d 6808 | . . . . 5 ⊢ (((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ)) → (((bra‘𝐴)‘(𝑥 ·ℎ 𝑦)) + ((bra‘𝐴)‘𝑧)) = ((𝑥 · ((bra‘𝐴)‘𝑦)) + ((bra‘𝐴)‘𝑧))) |
12 | 7, 11 | eqtrd 2805 | . . . 4 ⊢ (((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ)) → ((bra‘𝐴)‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · ((bra‘𝐴)‘𝑦)) + ((bra‘𝐴)‘𝑧))) |
13 | 12 | ralrimivva 3120 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ) → ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ ((bra‘𝐴)‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · ((bra‘𝐴)‘𝑦)) + ((bra‘𝐴)‘𝑧))) |
14 | 13 | ralrimiva 3115 | . 2 ⊢ (𝐴 ∈ ℋ → ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ ((bra‘𝐴)‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · ((bra‘𝐴)‘𝑦)) + ((bra‘𝐴)‘𝑧))) |
15 | ellnfn 29082 | . 2 ⊢ ((bra‘𝐴) ∈ LinFn ↔ ((bra‘𝐴): ℋ⟶ℂ ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ ((bra‘𝐴)‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · ((bra‘𝐴)‘𝑦)) + ((bra‘𝐴)‘𝑧)))) | |
16 | 1, 14, 15 | sylanbrc 572 | 1 ⊢ (𝐴 ∈ ℋ → (bra‘𝐴) ∈ LinFn) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ∀wral 3061 ⟶wf 6027 ‘cfv 6031 (class class class)co 6793 ℂcc 10136 + caddc 10141 · cmul 10143 ℋchil 28116 +ℎ cva 28117 ·ℎ csm 28118 LinFnclf 28151 bracbr 28153 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-hilex 28196 ax-hfvadd 28197 ax-hfvmul 28202 ax-hfi 28276 ax-his2 28280 ax-his3 28281 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-map 8011 df-lnfn 29047 df-bra 29049 |
This theorem is referenced by: rnbra 29306 kbass4 29318 |
Copyright terms: Public domain | W3C validator |