![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brabv | Structured version Visualization version GIF version |
Description: If two classes are in a relationship given by an ordered-pair class abstraction, the classes are sets. (Contributed by Alexander van der Vekens, 5-Nov-2017.) |
Ref | Expression |
---|---|
brabv | ⊢ (𝑋{〈𝑥, 𝑦〉 ∣ 𝜑}𝑌 → (𝑋 ∈ V ∧ 𝑌 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 4686 | . 2 ⊢ (𝑋{〈𝑥, 𝑦〉 ∣ 𝜑}𝑌 ↔ 〈𝑋, 𝑌〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) | |
2 | opprc 4456 | . . . 4 ⊢ (¬ (𝑋 ∈ V ∧ 𝑌 ∈ V) → 〈𝑋, 𝑌〉 = ∅) | |
3 | 0neqopab 6740 | . . . . 5 ⊢ ¬ ∅ ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} | |
4 | eleq1 2718 | . . . . 5 ⊢ (〈𝑋, 𝑌〉 = ∅ → (〈𝑋, 𝑌〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∅ ∈ {〈𝑥, 𝑦〉 ∣ 𝜑})) | |
5 | 3, 4 | mtbiri 316 | . . . 4 ⊢ (〈𝑋, 𝑌〉 = ∅ → ¬ 〈𝑋, 𝑌〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) |
6 | 2, 5 | syl 17 | . . 3 ⊢ (¬ (𝑋 ∈ V ∧ 𝑌 ∈ V) → ¬ 〈𝑋, 𝑌〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) |
7 | 6 | con4i 113 | . 2 ⊢ (〈𝑋, 𝑌〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} → (𝑋 ∈ V ∧ 𝑌 ∈ V)) |
8 | 1, 7 | sylbi 207 | 1 ⊢ (𝑋{〈𝑥, 𝑦〉 ∣ 𝜑}𝑌 → (𝑋 ∈ V ∧ 𝑌 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 Vcvv 3231 ∅c0 3948 〈cop 4216 class class class wbr 4685 {copab 4745 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-br 4686 df-opab 4746 |
This theorem is referenced by: brfvopab 6742 bropopvvv 7300 bropfvvvvlem 7301 isfunc 16571 eqgval 17690 rgrprop 26512 rusgrprop 26514 upwlkbprop 42044 |
Copyright terms: Public domain | W3C validator |