Users' Mathboxes Mathbox for Rodolfo Medina < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brabsb2 Structured version   Visualization version   GIF version

Theorem brabsb2 34651
Description: A closed form of brabsb 5136. (Contributed by Rodolfo Medina, 13-Oct-2010.)
Assertion
Ref Expression
brabsb2 (𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑} → (𝑧𝑅𝑤 ↔ [𝑤 / 𝑦][𝑧 / 𝑥]𝜑))
Distinct variable groups:   𝑥,𝑦,𝑧   𝑥,𝑤,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)   𝑅(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem brabsb2
StepHypRef Expression
1 breq 4806 . . 3 (𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑} → (𝑧𝑅𝑤𝑧{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑤))
2 df-br 4805 . . 3 (𝑧{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑤 ↔ ⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
31, 2syl6bb 276 . 2 (𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑} → (𝑧𝑅𝑤 ↔ ⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}))
4 opelopabsbALT 5134 . 2 (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ [𝑤 / 𝑦][𝑧 / 𝑥]𝜑)
53, 4syl6bb 276 1 (𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑} → (𝑧𝑅𝑤 ↔ [𝑤 / 𝑦][𝑧 / 𝑥]𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1632  [wsb 2046  wcel 2139  cop 4327   class class class wbr 4804  {copab 4864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pr 5055
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-rab 3059  df-v 3342  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-br 4805  df-opab 4865
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator