MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brabg Structured version   Visualization version   GIF version

Theorem brabg 4761
Description: The law of concretion for a binary relation. (Contributed by NM, 16-Aug-1999.) (Revised by Mario Carneiro, 19-Dec-2013.)
Hypotheses
Ref Expression
opelopabg.1 (𝑥 = 𝐴 → (𝜑𝜓))
opelopabg.2 (𝑦 = 𝐵 → (𝜓𝜒))
brabg.5 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}
Assertion
Ref Expression
brabg ((𝐴𝐶𝐵𝐷) → (𝐴𝑅𝐵𝜒))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝜒,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝑅(𝑥,𝑦)

Proof of Theorem brabg
StepHypRef Expression
1 opelopabg.1 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
2 opelopabg.2 . . 3 (𝑦 = 𝐵 → (𝜓𝜒))
31, 2sylan9bb 723 . 2 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜒))
4 brabg.5 . 2 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}
53, 4brabga 4756 1 ((𝐴𝐶𝐵𝐷) → (𝐴𝑅𝐵𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 191  wa 378   = wceq 1468  wcel 1937   class class class wbr 4434  {copab 4492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1698  ax-4 1711  ax-5 1789  ax-6 1836  ax-7 1883  ax-9 1946  ax-10 1965  ax-11 1970  ax-12 1983  ax-13 2137  ax-ext 2485  ax-sep 4558  ax-nul 4567  ax-pr 4680
This theorem depends on definitions:  df-bi 192  df-or 379  df-an 380  df-3an 1023  df-tru 1471  df-ex 1693  df-nf 1697  df-sb 1829  df-eu 2357  df-mo 2358  df-clab 2492  df-cleq 2498  df-clel 2501  df-nfc 2635  df-ne 2677  df-rab 2800  df-v 3068  df-dif 3429  df-un 3431  df-in 3433  df-ss 3440  df-nul 3758  df-if 3909  df-sn 3996  df-pr 3998  df-op 4002  df-br 4435  df-opab 4494
This theorem is referenced by:  brab  4765  ideqg  5033  opelcnvg  5062  f1owe  6317  brrpssg  6649  bren  7661  brdomg  7662  brwdom  8165  ltprord  9540  shftfib  13295  efgrelexlema  17560  isref  20681  istrkgld  24668  islnopp  24942  axcontlem5  25159  isfrgra  25878  cmbr  27400  leopg  27938  cvbr  28098  mdbr  28110  dmdbr  28115  soseq  30643  sltval  30685  isfne  31144  brabg2  32280  isriscg  32460  lcvbr  32827
  Copyright terms: Public domain W3C validator