![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brab | Structured version Visualization version GIF version |
Description: The law of concretion for a binary relation. (Contributed by NM, 16-Aug-1999.) |
Ref | Expression |
---|---|
opelopab.1 | ⊢ 𝐴 ∈ V |
opelopab.2 | ⊢ 𝐵 ∈ V |
opelopab.3 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
opelopab.4 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
brab.5 | ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} |
Ref | Expression |
---|---|
brab | ⊢ (𝐴𝑅𝐵 ↔ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelopab.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | opelopab.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | opelopab.3 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
4 | opelopab.4 | . . 3 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | |
5 | brab.5 | . . 3 ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} | |
6 | 3, 4, 5 | brabg 5127 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝑅𝐵 ↔ 𝜒)) |
7 | 1, 2, 6 | mp2an 664 | 1 ⊢ (𝐴𝑅𝐵 ↔ 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1630 ∈ wcel 2144 Vcvv 3349 class class class wbr 4784 {copab 4844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-rab 3069 df-v 3351 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-sn 4315 df-pr 4317 df-op 4321 df-br 4785 df-opab 4845 |
This theorem is referenced by: opbrop 5338 f1oweALT 7298 frxp 7437 fnwelem 7442 dftpos4 7522 dfac3 9143 axdc2lem 9471 brdom7disj 9554 brdom6disj 9555 ordpipq 9965 ltresr 10162 shftfn 14020 2shfti 14027 ishpg 25871 brcgr 26000 ex-opab 27625 br8d 29754 br8 31978 br6 31979 br4 31980 poseq 32084 dfbigcup2 32337 brsegle 32546 heiborlem2 33936 |
Copyright terms: Public domain | W3C validator |