![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > br2ndeqg | Structured version Visualization version GIF version |
Description: Uniqueness condition for the binary relation 2nd. (Contributed by Scott Fenton, 2-Jul-2020.) Revised to remove sethood hypothesis on 𝐶. (Revised by Peter Mazsa, 17-Jan-2022.) |
Ref | Expression |
---|---|
br2ndeqg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉2nd 𝐶 ↔ 𝐶 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | op2ndg 7223 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (2nd ‘〈𝐴, 𝐵〉) = 𝐵) | |
2 | 1 | eqeq1d 2653 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((2nd ‘〈𝐴, 𝐵〉) = 𝐶 ↔ 𝐵 = 𝐶)) |
3 | fo2nd 7231 | . . . 4 ⊢ 2nd :V–onto→V | |
4 | fofn 6155 | . . . 4 ⊢ (2nd :V–onto→V → 2nd Fn V) | |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ 2nd Fn V |
6 | opex 4962 | . . 3 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
7 | fnbrfvb 6274 | . . 3 ⊢ ((2nd Fn V ∧ 〈𝐴, 𝐵〉 ∈ V) → ((2nd ‘〈𝐴, 𝐵〉) = 𝐶 ↔ 〈𝐴, 𝐵〉2nd 𝐶)) | |
8 | 5, 6, 7 | mp2an 708 | . 2 ⊢ ((2nd ‘〈𝐴, 𝐵〉) = 𝐶 ↔ 〈𝐴, 𝐵〉2nd 𝐶) |
9 | eqcom 2658 | . 2 ⊢ (𝐵 = 𝐶 ↔ 𝐶 = 𝐵) | |
10 | 2, 8, 9 | 3bitr3g 302 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉2nd 𝐶 ↔ 𝐶 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1523 ∈ wcel 2030 Vcvv 3231 〈cop 4216 class class class wbr 4685 Fn wfn 5921 –onto→wfo 5924 ‘cfv 5926 2nd c2nd 7209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-fo 5932 df-fv 5934 df-2nd 7211 |
This theorem is referenced by: br2ndeq 31797 fv2ndcnv 31805 brxrn 34276 |
Copyright terms: Public domain | W3C validator |