Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  br1cnvxrn2 Structured version   Visualization version   GIF version

Theorem br1cnvxrn2 34496
Description: The converse of a binary relation over a range Cartesian product. (Contributed by Peter Mazsa, 11-Jul-2021.)
Assertion
Ref Expression
br1cnvxrn2 (𝐵𝑉 → (𝐴(𝑅𝑆)𝐵 ↔ ∃𝑦𝑧(𝐴 = ⟨𝑦, 𝑧⟩ ∧ 𝐵𝑅𝑦𝐵𝑆𝑧)))
Distinct variable groups:   𝑦,𝐴,𝑧   𝑦,𝐵,𝑧   𝑦,𝑅,𝑧   𝑦,𝑆,𝑧   𝑦,𝑉,𝑧

Proof of Theorem br1cnvxrn2
StepHypRef Expression
1 xrnrel 34477 . . 3 Rel (𝑅𝑆)
21relbrcnv 5647 . 2 (𝐴(𝑅𝑆)𝐵𝐵(𝑅𝑆)𝐴)
3 brxrn2 34479 . 2 (𝐵𝑉 → (𝐵(𝑅𝑆)𝐴 ↔ ∃𝑦𝑧(𝐴 = ⟨𝑦, 𝑧⟩ ∧ 𝐵𝑅𝑦𝐵𝑆𝑧)))
42, 3syl5bb 272 1 (𝐵𝑉 → (𝐴(𝑅𝑆)𝐵 ↔ ∃𝑦𝑧(𝐴 = ⟨𝑦, 𝑧⟩ ∧ 𝐵𝑅𝑦𝐵𝑆𝑧)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  w3a 1071   = wceq 1631  wex 1852  wcel 2145  cop 4322   class class class wbr 4786  ccnv 5248  cxrn 34314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-fo 6037  df-fv 6039  df-1st 7315  df-2nd 7316  df-xrn 34475
This theorem is referenced by:  elec1cnvxrn2  34497
  Copyright terms: Public domain W3C validator