MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bposlem7 Structured version   Visualization version   GIF version

Theorem bposlem7 25060
Description: Lemma for bpos 25063. The function 𝐹 is decreasing. (Contributed by Mario Carneiro, 13-Mar-2014.)
Hypotheses
Ref Expression
bposlem7.1 𝐹 = (𝑛 ∈ ℕ ↦ ((((√‘2) · (𝐺‘(√‘𝑛))) + ((9 / 4) · (𝐺‘(𝑛 / 2)))) + ((log‘2) / (√‘(2 · 𝑛)))))
bposlem7.2 𝐺 = (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / 𝑥))
bposlem7.3 (𝜑𝐴 ∈ ℕ)
bposlem7.4 (𝜑𝐵 ∈ ℕ)
bposlem7.5 (𝜑 → (e↑2) ≤ 𝐴)
bposlem7.6 (𝜑 → (e↑2) ≤ 𝐵)
Assertion
Ref Expression
bposlem7 (𝜑 → (𝐴 < 𝐵 → (𝐹𝐵) < (𝐹𝐴)))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝑛,𝐺   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑛)   𝐹(𝑥,𝑛)   𝐺(𝑥)

Proof of Theorem bposlem7
StepHypRef Expression
1 bposlem7.4 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℕ)
21nnrpd 11908 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℝ+)
32rpsqrtcld 14194 . . . . . . . . . . 11 (𝜑 → (√‘𝐵) ∈ ℝ+)
4 fveq2 6229 . . . . . . . . . . . . 13 (𝑥 = (√‘𝐵) → (log‘𝑥) = (log‘(√‘𝐵)))
5 id 22 . . . . . . . . . . . . 13 (𝑥 = (√‘𝐵) → 𝑥 = (√‘𝐵))
64, 5oveq12d 6708 . . . . . . . . . . . 12 (𝑥 = (√‘𝐵) → ((log‘𝑥) / 𝑥) = ((log‘(√‘𝐵)) / (√‘𝐵)))
7 bposlem7.2 . . . . . . . . . . . 12 𝐺 = (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / 𝑥))
8 ovex 6718 . . . . . . . . . . . 12 ((log‘(√‘𝐵)) / (√‘𝐵)) ∈ V
96, 7, 8fvmpt 6321 . . . . . . . . . . 11 ((√‘𝐵) ∈ ℝ+ → (𝐺‘(√‘𝐵)) = ((log‘(√‘𝐵)) / (√‘𝐵)))
103, 9syl 17 . . . . . . . . . 10 (𝜑 → (𝐺‘(√‘𝐵)) = ((log‘(√‘𝐵)) / (√‘𝐵)))
11 bposlem7.3 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℕ)
1211nnrpd 11908 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℝ+)
1312rpsqrtcld 14194 . . . . . . . . . . 11 (𝜑 → (√‘𝐴) ∈ ℝ+)
14 fveq2 6229 . . . . . . . . . . . . 13 (𝑥 = (√‘𝐴) → (log‘𝑥) = (log‘(√‘𝐴)))
15 id 22 . . . . . . . . . . . . 13 (𝑥 = (√‘𝐴) → 𝑥 = (√‘𝐴))
1614, 15oveq12d 6708 . . . . . . . . . . . 12 (𝑥 = (√‘𝐴) → ((log‘𝑥) / 𝑥) = ((log‘(√‘𝐴)) / (√‘𝐴)))
17 ovex 6718 . . . . . . . . . . . 12 ((log‘(√‘𝐴)) / (√‘𝐴)) ∈ V
1816, 7, 17fvmpt 6321 . . . . . . . . . . 11 ((√‘𝐴) ∈ ℝ+ → (𝐺‘(√‘𝐴)) = ((log‘(√‘𝐴)) / (√‘𝐴)))
1913, 18syl 17 . . . . . . . . . 10 (𝜑 → (𝐺‘(√‘𝐴)) = ((log‘(√‘𝐴)) / (√‘𝐴)))
2010, 19breq12d 4698 . . . . . . . . 9 (𝜑 → ((𝐺‘(√‘𝐵)) < (𝐺‘(√‘𝐴)) ↔ ((log‘(√‘𝐵)) / (√‘𝐵)) < ((log‘(√‘𝐴)) / (√‘𝐴))))
2113rpred 11910 . . . . . . . . . 10 (𝜑 → (√‘𝐴) ∈ ℝ)
22 bposlem7.5 . . . . . . . . . . . 12 (𝜑 → (e↑2) ≤ 𝐴)
2312rprege0d 11917 . . . . . . . . . . . . 13 (𝜑 → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
24 resqrtth 14040 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((√‘𝐴)↑2) = 𝐴)
2523, 24syl 17 . . . . . . . . . . . 12 (𝜑 → ((√‘𝐴)↑2) = 𝐴)
2622, 25breqtrrd 4713 . . . . . . . . . . 11 (𝜑 → (e↑2) ≤ ((√‘𝐴)↑2))
2713rpge0d 11914 . . . . . . . . . . . 12 (𝜑 → 0 ≤ (√‘𝐴))
28 ere 14863 . . . . . . . . . . . . 13 e ∈ ℝ
29 0re 10078 . . . . . . . . . . . . . 14 0 ∈ ℝ
30 epos 14979 . . . . . . . . . . . . . 14 0 < e
3129, 28, 30ltleii 10198 . . . . . . . . . . . . 13 0 ≤ e
32 le2sq 12978 . . . . . . . . . . . . 13 (((e ∈ ℝ ∧ 0 ≤ e) ∧ ((√‘𝐴) ∈ ℝ ∧ 0 ≤ (√‘𝐴))) → (e ≤ (√‘𝐴) ↔ (e↑2) ≤ ((√‘𝐴)↑2)))
3328, 31, 32mpanl12 718 . . . . . . . . . . . 12 (((√‘𝐴) ∈ ℝ ∧ 0 ≤ (√‘𝐴)) → (e ≤ (√‘𝐴) ↔ (e↑2) ≤ ((√‘𝐴)↑2)))
3421, 27, 33syl2anc 694 . . . . . . . . . . 11 (𝜑 → (e ≤ (√‘𝐴) ↔ (e↑2) ≤ ((√‘𝐴)↑2)))
3526, 34mpbird 247 . . . . . . . . . 10 (𝜑 → e ≤ (√‘𝐴))
363rpred 11910 . . . . . . . . . 10 (𝜑 → (√‘𝐵) ∈ ℝ)
37 bposlem7.6 . . . . . . . . . . . 12 (𝜑 → (e↑2) ≤ 𝐵)
382rprege0d 11917 . . . . . . . . . . . . 13 (𝜑 → (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵))
39 resqrtth 14040 . . . . . . . . . . . . 13 ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → ((√‘𝐵)↑2) = 𝐵)
4038, 39syl 17 . . . . . . . . . . . 12 (𝜑 → ((√‘𝐵)↑2) = 𝐵)
4137, 40breqtrrd 4713 . . . . . . . . . . 11 (𝜑 → (e↑2) ≤ ((√‘𝐵)↑2))
423rpge0d 11914 . . . . . . . . . . . 12 (𝜑 → 0 ≤ (√‘𝐵))
43 le2sq 12978 . . . . . . . . . . . . 13 (((e ∈ ℝ ∧ 0 ≤ e) ∧ ((√‘𝐵) ∈ ℝ ∧ 0 ≤ (√‘𝐵))) → (e ≤ (√‘𝐵) ↔ (e↑2) ≤ ((√‘𝐵)↑2)))
4428, 31, 43mpanl12 718 . . . . . . . . . . . 12 (((√‘𝐵) ∈ ℝ ∧ 0 ≤ (√‘𝐵)) → (e ≤ (√‘𝐵) ↔ (e↑2) ≤ ((√‘𝐵)↑2)))
4536, 42, 44syl2anc 694 . . . . . . . . . . 11 (𝜑 → (e ≤ (√‘𝐵) ↔ (e↑2) ≤ ((√‘𝐵)↑2)))
4641, 45mpbird 247 . . . . . . . . . 10 (𝜑 → e ≤ (√‘𝐵))
47 logdivlt 24412 . . . . . . . . . 10 ((((√‘𝐴) ∈ ℝ ∧ e ≤ (√‘𝐴)) ∧ ((√‘𝐵) ∈ ℝ ∧ e ≤ (√‘𝐵))) → ((√‘𝐴) < (√‘𝐵) ↔ ((log‘(√‘𝐵)) / (√‘𝐵)) < ((log‘(√‘𝐴)) / (√‘𝐴))))
4821, 35, 36, 46, 47syl22anc 1367 . . . . . . . . 9 (𝜑 → ((√‘𝐴) < (√‘𝐵) ↔ ((log‘(√‘𝐵)) / (√‘𝐵)) < ((log‘(√‘𝐴)) / (√‘𝐴))))
4921, 36, 27, 42lt2sqd 13083 . . . . . . . . 9 (𝜑 → ((√‘𝐴) < (√‘𝐵) ↔ ((√‘𝐴)↑2) < ((√‘𝐵)↑2)))
5020, 48, 493bitr2rd 297 . . . . . . . 8 (𝜑 → (((√‘𝐴)↑2) < ((√‘𝐵)↑2) ↔ (𝐺‘(√‘𝐵)) < (𝐺‘(√‘𝐴))))
5125, 40breq12d 4698 . . . . . . . 8 (𝜑 → (((√‘𝐴)↑2) < ((√‘𝐵)↑2) ↔ 𝐴 < 𝐵))
52 relogcl 24367 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ)
53 rerpdivcl 11899 . . . . . . . . . . . . 13 (((log‘𝑥) ∈ ℝ ∧ 𝑥 ∈ ℝ+) → ((log‘𝑥) / 𝑥) ∈ ℝ)
5452, 53mpancom 704 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → ((log‘𝑥) / 𝑥) ∈ ℝ)
557, 54fmpti 6423 . . . . . . . . . . 11 𝐺:ℝ+⟶ℝ
5655ffvelrni 6398 . . . . . . . . . 10 ((√‘𝐵) ∈ ℝ+ → (𝐺‘(√‘𝐵)) ∈ ℝ)
573, 56syl 17 . . . . . . . . 9 (𝜑 → (𝐺‘(√‘𝐵)) ∈ ℝ)
5855ffvelrni 6398 . . . . . . . . . 10 ((√‘𝐴) ∈ ℝ+ → (𝐺‘(√‘𝐴)) ∈ ℝ)
5913, 58syl 17 . . . . . . . . 9 (𝜑 → (𝐺‘(√‘𝐴)) ∈ ℝ)
60 2rp 11875 . . . . . . . . . 10 2 ∈ ℝ+
61 rpsqrtcl 14049 . . . . . . . . . 10 (2 ∈ ℝ+ → (√‘2) ∈ ℝ+)
6260, 61mp1i 13 . . . . . . . . 9 (𝜑 → (√‘2) ∈ ℝ+)
6357, 59, 62ltmul2d 11952 . . . . . . . 8 (𝜑 → ((𝐺‘(√‘𝐵)) < (𝐺‘(√‘𝐴)) ↔ ((√‘2) · (𝐺‘(√‘𝐵))) < ((√‘2) · (𝐺‘(√‘𝐴)))))
6450, 51, 633bitr3d 298 . . . . . . 7 (𝜑 → (𝐴 < 𝐵 ↔ ((√‘2) · (𝐺‘(√‘𝐵))) < ((√‘2) · (𝐺‘(√‘𝐴)))))
6564biimpd 219 . . . . . 6 (𝜑 → (𝐴 < 𝐵 → ((√‘2) · (𝐺‘(√‘𝐵))) < ((√‘2) · (𝐺‘(√‘𝐴)))))
6611nnred 11073 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
671nnred 11073 . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ)
68 2re 11128 . . . . . . . . . . . 12 2 ∈ ℝ
69 2pos 11150 . . . . . . . . . . . 12 0 < 2
7068, 69pm3.2i 470 . . . . . . . . . . 11 (2 ∈ ℝ ∧ 0 < 2)
7170a1i 11 . . . . . . . . . 10 (𝜑 → (2 ∈ ℝ ∧ 0 < 2))
72 ltdiv1 10925 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (𝐴 < 𝐵 ↔ (𝐴 / 2) < (𝐵 / 2)))
7366, 67, 71, 72syl3anc 1366 . . . . . . . . 9 (𝜑 → (𝐴 < 𝐵 ↔ (𝐴 / 2) < (𝐵 / 2)))
7412rphalfcld 11922 . . . . . . . . . . 11 (𝜑 → (𝐴 / 2) ∈ ℝ+)
7574rpred 11910 . . . . . . . . . 10 (𝜑 → (𝐴 / 2) ∈ ℝ)
7628, 68remulcli 10092 . . . . . . . . . . . . 13 (e · 2) ∈ ℝ
7776a1i 11 . . . . . . . . . . . 12 (𝜑 → (e · 2) ∈ ℝ)
7828resqcli 12989 . . . . . . . . . . . . 13 (e↑2) ∈ ℝ
7978a1i 11 . . . . . . . . . . . 12 (𝜑 → (e↑2) ∈ ℝ)
80 egt2lt3 14978 . . . . . . . . . . . . . . . . 17 (2 < e ∧ e < 3)
8180simpli 473 . . . . . . . . . . . . . . . 16 2 < e
8268, 28, 81ltleii 10198 . . . . . . . . . . . . . . 15 2 ≤ e
8368, 28, 28lemul2i 10985 . . . . . . . . . . . . . . . 16 (0 < e → (2 ≤ e ↔ (e · 2) ≤ (e · e)))
8430, 83ax-mp 5 . . . . . . . . . . . . . . 15 (2 ≤ e ↔ (e · 2) ≤ (e · e))
8582, 84mpbi 220 . . . . . . . . . . . . . 14 (e · 2) ≤ (e · e)
8628recni 10090 . . . . . . . . . . . . . . 15 e ∈ ℂ
8786sqvali 12983 . . . . . . . . . . . . . 14 (e↑2) = (e · e)
8885, 87breqtrri 4712 . . . . . . . . . . . . 13 (e · 2) ≤ (e↑2)
8988a1i 11 . . . . . . . . . . . 12 (𝜑 → (e · 2) ≤ (e↑2))
9077, 79, 66, 89, 22letrd 10232 . . . . . . . . . . 11 (𝜑 → (e · 2) ≤ 𝐴)
91 lemuldiv 10941 . . . . . . . . . . . . 13 ((e ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((e · 2) ≤ 𝐴 ↔ e ≤ (𝐴 / 2)))
9228, 70, 91mp3an13 1455 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → ((e · 2) ≤ 𝐴 ↔ e ≤ (𝐴 / 2)))
9366, 92syl 17 . . . . . . . . . . 11 (𝜑 → ((e · 2) ≤ 𝐴 ↔ e ≤ (𝐴 / 2)))
9490, 93mpbid 222 . . . . . . . . . 10 (𝜑 → e ≤ (𝐴 / 2))
952rphalfcld 11922 . . . . . . . . . . 11 (𝜑 → (𝐵 / 2) ∈ ℝ+)
9695rpred 11910 . . . . . . . . . 10 (𝜑 → (𝐵 / 2) ∈ ℝ)
9777, 79, 67, 89, 37letrd 10232 . . . . . . . . . . 11 (𝜑 → (e · 2) ≤ 𝐵)
98 lemuldiv 10941 . . . . . . . . . . . . 13 ((e ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((e · 2) ≤ 𝐵 ↔ e ≤ (𝐵 / 2)))
9928, 70, 98mp3an13 1455 . . . . . . . . . . . 12 (𝐵 ∈ ℝ → ((e · 2) ≤ 𝐵 ↔ e ≤ (𝐵 / 2)))
10067, 99syl 17 . . . . . . . . . . 11 (𝜑 → ((e · 2) ≤ 𝐵 ↔ e ≤ (𝐵 / 2)))
10197, 100mpbid 222 . . . . . . . . . 10 (𝜑 → e ≤ (𝐵 / 2))
102 logdivlt 24412 . . . . . . . . . 10 ((((𝐴 / 2) ∈ ℝ ∧ e ≤ (𝐴 / 2)) ∧ ((𝐵 / 2) ∈ ℝ ∧ e ≤ (𝐵 / 2))) → ((𝐴 / 2) < (𝐵 / 2) ↔ ((log‘(𝐵 / 2)) / (𝐵 / 2)) < ((log‘(𝐴 / 2)) / (𝐴 / 2))))
10375, 94, 96, 101, 102syl22anc 1367 . . . . . . . . 9 (𝜑 → ((𝐴 / 2) < (𝐵 / 2) ↔ ((log‘(𝐵 / 2)) / (𝐵 / 2)) < ((log‘(𝐴 / 2)) / (𝐴 / 2))))
10473, 103bitrd 268 . . . . . . . 8 (𝜑 → (𝐴 < 𝐵 ↔ ((log‘(𝐵 / 2)) / (𝐵 / 2)) < ((log‘(𝐴 / 2)) / (𝐴 / 2))))
105 fveq2 6229 . . . . . . . . . . . 12 (𝑥 = (𝐵 / 2) → (log‘𝑥) = (log‘(𝐵 / 2)))
106 id 22 . . . . . . . . . . . 12 (𝑥 = (𝐵 / 2) → 𝑥 = (𝐵 / 2))
107105, 106oveq12d 6708 . . . . . . . . . . 11 (𝑥 = (𝐵 / 2) → ((log‘𝑥) / 𝑥) = ((log‘(𝐵 / 2)) / (𝐵 / 2)))
108 ovex 6718 . . . . . . . . . . 11 ((log‘(𝐵 / 2)) / (𝐵 / 2)) ∈ V
109107, 7, 108fvmpt 6321 . . . . . . . . . 10 ((𝐵 / 2) ∈ ℝ+ → (𝐺‘(𝐵 / 2)) = ((log‘(𝐵 / 2)) / (𝐵 / 2)))
11095, 109syl 17 . . . . . . . . 9 (𝜑 → (𝐺‘(𝐵 / 2)) = ((log‘(𝐵 / 2)) / (𝐵 / 2)))
111 fveq2 6229 . . . . . . . . . . . 12 (𝑥 = (𝐴 / 2) → (log‘𝑥) = (log‘(𝐴 / 2)))
112 id 22 . . . . . . . . . . . 12 (𝑥 = (𝐴 / 2) → 𝑥 = (𝐴 / 2))
113111, 112oveq12d 6708 . . . . . . . . . . 11 (𝑥 = (𝐴 / 2) → ((log‘𝑥) / 𝑥) = ((log‘(𝐴 / 2)) / (𝐴 / 2)))
114 ovex 6718 . . . . . . . . . . 11 ((log‘(𝐴 / 2)) / (𝐴 / 2)) ∈ V
115113, 7, 114fvmpt 6321 . . . . . . . . . 10 ((𝐴 / 2) ∈ ℝ+ → (𝐺‘(𝐴 / 2)) = ((log‘(𝐴 / 2)) / (𝐴 / 2)))
11674, 115syl 17 . . . . . . . . 9 (𝜑 → (𝐺‘(𝐴 / 2)) = ((log‘(𝐴 / 2)) / (𝐴 / 2)))
117110, 116breq12d 4698 . . . . . . . 8 (𝜑 → ((𝐺‘(𝐵 / 2)) < (𝐺‘(𝐴 / 2)) ↔ ((log‘(𝐵 / 2)) / (𝐵 / 2)) < ((log‘(𝐴 / 2)) / (𝐴 / 2))))
11855ffvelrni 6398 . . . . . . . . . 10 ((𝐵 / 2) ∈ ℝ+ → (𝐺‘(𝐵 / 2)) ∈ ℝ)
11995, 118syl 17 . . . . . . . . 9 (𝜑 → (𝐺‘(𝐵 / 2)) ∈ ℝ)
12055ffvelrni 6398 . . . . . . . . . 10 ((𝐴 / 2) ∈ ℝ+ → (𝐺‘(𝐴 / 2)) ∈ ℝ)
12174, 120syl 17 . . . . . . . . 9 (𝜑 → (𝐺‘(𝐴 / 2)) ∈ ℝ)
122 9nn 11230 . . . . . . . . . . 11 9 ∈ ℕ
123 4nn 11225 . . . . . . . . . . 11 4 ∈ ℕ
124 nnrp 11880 . . . . . . . . . . . 12 (9 ∈ ℕ → 9 ∈ ℝ+)
125 nnrp 11880 . . . . . . . . . . . 12 (4 ∈ ℕ → 4 ∈ ℝ+)
126 rpdivcl 11894 . . . . . . . . . . . 12 ((9 ∈ ℝ+ ∧ 4 ∈ ℝ+) → (9 / 4) ∈ ℝ+)
127124, 125, 126syl2an 493 . . . . . . . . . . 11 ((9 ∈ ℕ ∧ 4 ∈ ℕ) → (9 / 4) ∈ ℝ+)
128122, 123, 127mp2an 708 . . . . . . . . . 10 (9 / 4) ∈ ℝ+
129128a1i 11 . . . . . . . . 9 (𝜑 → (9 / 4) ∈ ℝ+)
130119, 121, 129ltmul2d 11952 . . . . . . . 8 (𝜑 → ((𝐺‘(𝐵 / 2)) < (𝐺‘(𝐴 / 2)) ↔ ((9 / 4) · (𝐺‘(𝐵 / 2))) < ((9 / 4) · (𝐺‘(𝐴 / 2)))))
131104, 117, 1303bitr2d 296 . . . . . . 7 (𝜑 → (𝐴 < 𝐵 ↔ ((9 / 4) · (𝐺‘(𝐵 / 2))) < ((9 / 4) · (𝐺‘(𝐴 / 2)))))
132131biimpd 219 . . . . . 6 (𝜑 → (𝐴 < 𝐵 → ((9 / 4) · (𝐺‘(𝐵 / 2))) < ((9 / 4) · (𝐺‘(𝐴 / 2)))))
13365, 132jcad 554 . . . . 5 (𝜑 → (𝐴 < 𝐵 → (((√‘2) · (𝐺‘(√‘𝐵))) < ((√‘2) · (𝐺‘(√‘𝐴))) ∧ ((9 / 4) · (𝐺‘(𝐵 / 2))) < ((9 / 4) · (𝐺‘(𝐴 / 2))))))
134 sqrt2re 15024 . . . . . . 7 (√‘2) ∈ ℝ
135 remulcl 10059 . . . . . . 7 (((√‘2) ∈ ℝ ∧ (𝐺‘(√‘𝐵)) ∈ ℝ) → ((√‘2) · (𝐺‘(√‘𝐵))) ∈ ℝ)
136134, 57, 135sylancr 696 . . . . . 6 (𝜑 → ((√‘2) · (𝐺‘(√‘𝐵))) ∈ ℝ)
137 9re 11145 . . . . . . . 8 9 ∈ ℝ
138 4re 11135 . . . . . . . 8 4 ∈ ℝ
139 4ne0 11155 . . . . . . . 8 4 ≠ 0
140137, 138, 139redivcli 10830 . . . . . . 7 (9 / 4) ∈ ℝ
141 remulcl 10059 . . . . . . 7 (((9 / 4) ∈ ℝ ∧ (𝐺‘(𝐵 / 2)) ∈ ℝ) → ((9 / 4) · (𝐺‘(𝐵 / 2))) ∈ ℝ)
142140, 119, 141sylancr 696 . . . . . 6 (𝜑 → ((9 / 4) · (𝐺‘(𝐵 / 2))) ∈ ℝ)
143 remulcl 10059 . . . . . . 7 (((√‘2) ∈ ℝ ∧ (𝐺‘(√‘𝐴)) ∈ ℝ) → ((√‘2) · (𝐺‘(√‘𝐴))) ∈ ℝ)
144134, 59, 143sylancr 696 . . . . . 6 (𝜑 → ((√‘2) · (𝐺‘(√‘𝐴))) ∈ ℝ)
145 remulcl 10059 . . . . . . 7 (((9 / 4) ∈ ℝ ∧ (𝐺‘(𝐴 / 2)) ∈ ℝ) → ((9 / 4) · (𝐺‘(𝐴 / 2))) ∈ ℝ)
146140, 121, 145sylancr 696 . . . . . 6 (𝜑 → ((9 / 4) · (𝐺‘(𝐴 / 2))) ∈ ℝ)
147 lt2add 10551 . . . . . 6 (((((√‘2) · (𝐺‘(√‘𝐵))) ∈ ℝ ∧ ((9 / 4) · (𝐺‘(𝐵 / 2))) ∈ ℝ) ∧ (((√‘2) · (𝐺‘(√‘𝐴))) ∈ ℝ ∧ ((9 / 4) · (𝐺‘(𝐴 / 2))) ∈ ℝ)) → ((((√‘2) · (𝐺‘(√‘𝐵))) < ((√‘2) · (𝐺‘(√‘𝐴))) ∧ ((9 / 4) · (𝐺‘(𝐵 / 2))) < ((9 / 4) · (𝐺‘(𝐴 / 2)))) → (((√‘2) · (𝐺‘(√‘𝐵))) + ((9 / 4) · (𝐺‘(𝐵 / 2)))) < (((√‘2) · (𝐺‘(√‘𝐴))) + ((9 / 4) · (𝐺‘(𝐴 / 2))))))
148136, 142, 144, 146, 147syl22anc 1367 . . . . 5 (𝜑 → ((((√‘2) · (𝐺‘(√‘𝐵))) < ((√‘2) · (𝐺‘(√‘𝐴))) ∧ ((9 / 4) · (𝐺‘(𝐵 / 2))) < ((9 / 4) · (𝐺‘(𝐴 / 2)))) → (((√‘2) · (𝐺‘(√‘𝐵))) + ((9 / 4) · (𝐺‘(𝐵 / 2)))) < (((√‘2) · (𝐺‘(√‘𝐴))) + ((9 / 4) · (𝐺‘(𝐴 / 2))))))
149133, 148syld 47 . . . 4 (𝜑 → (𝐴 < 𝐵 → (((√‘2) · (𝐺‘(√‘𝐵))) + ((9 / 4) · (𝐺‘(𝐵 / 2)))) < (((√‘2) · (𝐺‘(√‘𝐴))) + ((9 / 4) · (𝐺‘(𝐴 / 2))))))
150 ltmul2 10912 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (𝐴 < 𝐵 ↔ (2 · 𝐴) < (2 · 𝐵)))
15166, 67, 71, 150syl3anc 1366 . . . . . 6 (𝜑 → (𝐴 < 𝐵 ↔ (2 · 𝐴) < (2 · 𝐵)))
152 rpmulcl 11893 . . . . . . . . . 10 ((2 ∈ ℝ+𝐴 ∈ ℝ+) → (2 · 𝐴) ∈ ℝ+)
15360, 12, 152sylancr 696 . . . . . . . . 9 (𝜑 → (2 · 𝐴) ∈ ℝ+)
154153rpsqrtcld 14194 . . . . . . . 8 (𝜑 → (√‘(2 · 𝐴)) ∈ ℝ+)
155 rpmulcl 11893 . . . . . . . . . 10 ((2 ∈ ℝ+𝐵 ∈ ℝ+) → (2 · 𝐵) ∈ ℝ+)
15660, 2, 155sylancr 696 . . . . . . . . 9 (𝜑 → (2 · 𝐵) ∈ ℝ+)
157156rpsqrtcld 14194 . . . . . . . 8 (𝜑 → (√‘(2 · 𝐵)) ∈ ℝ+)
158 rprege0 11885 . . . . . . . . 9 ((√‘(2 · 𝐴)) ∈ ℝ+ → ((√‘(2 · 𝐴)) ∈ ℝ ∧ 0 ≤ (√‘(2 · 𝐴))))
159 rprege0 11885 . . . . . . . . 9 ((√‘(2 · 𝐵)) ∈ ℝ+ → ((√‘(2 · 𝐵)) ∈ ℝ ∧ 0 ≤ (√‘(2 · 𝐵))))
160 lt2sq 12977 . . . . . . . . 9 ((((√‘(2 · 𝐴)) ∈ ℝ ∧ 0 ≤ (√‘(2 · 𝐴))) ∧ ((√‘(2 · 𝐵)) ∈ ℝ ∧ 0 ≤ (√‘(2 · 𝐵)))) → ((√‘(2 · 𝐴)) < (√‘(2 · 𝐵)) ↔ ((√‘(2 · 𝐴))↑2) < ((√‘(2 · 𝐵))↑2)))
161158, 159, 160syl2an 493 . . . . . . . 8 (((√‘(2 · 𝐴)) ∈ ℝ+ ∧ (√‘(2 · 𝐵)) ∈ ℝ+) → ((√‘(2 · 𝐴)) < (√‘(2 · 𝐵)) ↔ ((√‘(2 · 𝐴))↑2) < ((√‘(2 · 𝐵))↑2)))
162154, 157, 161syl2anc 694 . . . . . . 7 (𝜑 → ((√‘(2 · 𝐴)) < (√‘(2 · 𝐵)) ↔ ((√‘(2 · 𝐴))↑2) < ((√‘(2 · 𝐵))↑2)))
163153rprege0d 11917 . . . . . . . . 9 (𝜑 → ((2 · 𝐴) ∈ ℝ ∧ 0 ≤ (2 · 𝐴)))
164 resqrtth 14040 . . . . . . . . 9 (((2 · 𝐴) ∈ ℝ ∧ 0 ≤ (2 · 𝐴)) → ((√‘(2 · 𝐴))↑2) = (2 · 𝐴))
165163, 164syl 17 . . . . . . . 8 (𝜑 → ((√‘(2 · 𝐴))↑2) = (2 · 𝐴))
166156rprege0d 11917 . . . . . . . . 9 (𝜑 → ((2 · 𝐵) ∈ ℝ ∧ 0 ≤ (2 · 𝐵)))
167 resqrtth 14040 . . . . . . . . 9 (((2 · 𝐵) ∈ ℝ ∧ 0 ≤ (2 · 𝐵)) → ((√‘(2 · 𝐵))↑2) = (2 · 𝐵))
168166, 167syl 17 . . . . . . . 8 (𝜑 → ((√‘(2 · 𝐵))↑2) = (2 · 𝐵))
169165, 168breq12d 4698 . . . . . . 7 (𝜑 → (((√‘(2 · 𝐴))↑2) < ((√‘(2 · 𝐵))↑2) ↔ (2 · 𝐴) < (2 · 𝐵)))
170162, 169bitr2d 269 . . . . . 6 (𝜑 → ((2 · 𝐴) < (2 · 𝐵) ↔ (√‘(2 · 𝐴)) < (√‘(2 · 𝐵))))
171 1lt2 11232 . . . . . . . . 9 1 < 2
172 rplogcl 24395 . . . . . . . . 9 ((2 ∈ ℝ ∧ 1 < 2) → (log‘2) ∈ ℝ+)
17368, 171, 172mp2an 708 . . . . . . . 8 (log‘2) ∈ ℝ+
174173a1i 11 . . . . . . 7 (𝜑 → (log‘2) ∈ ℝ+)
175154, 157, 174ltdiv2d 11933 . . . . . 6 (𝜑 → ((√‘(2 · 𝐴)) < (√‘(2 · 𝐵)) ↔ ((log‘2) / (√‘(2 · 𝐵))) < ((log‘2) / (√‘(2 · 𝐴)))))
176151, 170, 1753bitrd 294 . . . . 5 (𝜑 → (𝐴 < 𝐵 ↔ ((log‘2) / (√‘(2 · 𝐵))) < ((log‘2) / (√‘(2 · 𝐴)))))
177176biimpd 219 . . . 4 (𝜑 → (𝐴 < 𝐵 → ((log‘2) / (√‘(2 · 𝐵))) < ((log‘2) / (√‘(2 · 𝐴)))))
178149, 177jcad 554 . . 3 (𝜑 → (𝐴 < 𝐵 → ((((√‘2) · (𝐺‘(√‘𝐵))) + ((9 / 4) · (𝐺‘(𝐵 / 2)))) < (((√‘2) · (𝐺‘(√‘𝐴))) + ((9 / 4) · (𝐺‘(𝐴 / 2)))) ∧ ((log‘2) / (√‘(2 · 𝐵))) < ((log‘2) / (√‘(2 · 𝐴))))))
179136, 142readdcld 10107 . . . 4 (𝜑 → (((√‘2) · (𝐺‘(√‘𝐵))) + ((9 / 4) · (𝐺‘(𝐵 / 2)))) ∈ ℝ)
180 rpre 11877 . . . . . 6 ((log‘2) ∈ ℝ+ → (log‘2) ∈ ℝ)
181173, 180ax-mp 5 . . . . 5 (log‘2) ∈ ℝ
182 rerpdivcl 11899 . . . . 5 (((log‘2) ∈ ℝ ∧ (√‘(2 · 𝐵)) ∈ ℝ+) → ((log‘2) / (√‘(2 · 𝐵))) ∈ ℝ)
183181, 157, 182sylancr 696 . . . 4 (𝜑 → ((log‘2) / (√‘(2 · 𝐵))) ∈ ℝ)
184144, 146readdcld 10107 . . . 4 (𝜑 → (((√‘2) · (𝐺‘(√‘𝐴))) + ((9 / 4) · (𝐺‘(𝐴 / 2)))) ∈ ℝ)
185 rerpdivcl 11899 . . . . 5 (((log‘2) ∈ ℝ ∧ (√‘(2 · 𝐴)) ∈ ℝ+) → ((log‘2) / (√‘(2 · 𝐴))) ∈ ℝ)
186181, 154, 185sylancr 696 . . . 4 (𝜑 → ((log‘2) / (√‘(2 · 𝐴))) ∈ ℝ)
187 lt2add 10551 . . . 4 ((((((√‘2) · (𝐺‘(√‘𝐵))) + ((9 / 4) · (𝐺‘(𝐵 / 2)))) ∈ ℝ ∧ ((log‘2) / (√‘(2 · 𝐵))) ∈ ℝ) ∧ ((((√‘2) · (𝐺‘(√‘𝐴))) + ((9 / 4) · (𝐺‘(𝐴 / 2)))) ∈ ℝ ∧ ((log‘2) / (√‘(2 · 𝐴))) ∈ ℝ)) → (((((√‘2) · (𝐺‘(√‘𝐵))) + ((9 / 4) · (𝐺‘(𝐵 / 2)))) < (((√‘2) · (𝐺‘(√‘𝐴))) + ((9 / 4) · (𝐺‘(𝐴 / 2)))) ∧ ((log‘2) / (√‘(2 · 𝐵))) < ((log‘2) / (√‘(2 · 𝐴)))) → ((((√‘2) · (𝐺‘(√‘𝐵))) + ((9 / 4) · (𝐺‘(𝐵 / 2)))) + ((log‘2) / (√‘(2 · 𝐵)))) < ((((√‘2) · (𝐺‘(√‘𝐴))) + ((9 / 4) · (𝐺‘(𝐴 / 2)))) + ((log‘2) / (√‘(2 · 𝐴))))))
188179, 183, 184, 186, 187syl22anc 1367 . . 3 (𝜑 → (((((√‘2) · (𝐺‘(√‘𝐵))) + ((9 / 4) · (𝐺‘(𝐵 / 2)))) < (((√‘2) · (𝐺‘(√‘𝐴))) + ((9 / 4) · (𝐺‘(𝐴 / 2)))) ∧ ((log‘2) / (√‘(2 · 𝐵))) < ((log‘2) / (√‘(2 · 𝐴)))) → ((((√‘2) · (𝐺‘(√‘𝐵))) + ((9 / 4) · (𝐺‘(𝐵 / 2)))) + ((log‘2) / (√‘(2 · 𝐵)))) < ((((√‘2) · (𝐺‘(√‘𝐴))) + ((9 / 4) · (𝐺‘(𝐴 / 2)))) + ((log‘2) / (√‘(2 · 𝐴))))))
189178, 188syld 47 . 2 (𝜑 → (𝐴 < 𝐵 → ((((√‘2) · (𝐺‘(√‘𝐵))) + ((9 / 4) · (𝐺‘(𝐵 / 2)))) + ((log‘2) / (√‘(2 · 𝐵)))) < ((((√‘2) · (𝐺‘(√‘𝐴))) + ((9 / 4) · (𝐺‘(𝐴 / 2)))) + ((log‘2) / (√‘(2 · 𝐴))))))
190 fveq2 6229 . . . . . . . . 9 (𝑛 = 𝐵 → (√‘𝑛) = (√‘𝐵))
191190fveq2d 6233 . . . . . . . 8 (𝑛 = 𝐵 → (𝐺‘(√‘𝑛)) = (𝐺‘(√‘𝐵)))
192191oveq2d 6706 . . . . . . 7 (𝑛 = 𝐵 → ((√‘2) · (𝐺‘(√‘𝑛))) = ((√‘2) · (𝐺‘(√‘𝐵))))
193 oveq1 6697 . . . . . . . . 9 (𝑛 = 𝐵 → (𝑛 / 2) = (𝐵 / 2))
194193fveq2d 6233 . . . . . . . 8 (𝑛 = 𝐵 → (𝐺‘(𝑛 / 2)) = (𝐺‘(𝐵 / 2)))
195194oveq2d 6706 . . . . . . 7 (𝑛 = 𝐵 → ((9 / 4) · (𝐺‘(𝑛 / 2))) = ((9 / 4) · (𝐺‘(𝐵 / 2))))
196192, 195oveq12d 6708 . . . . . 6 (𝑛 = 𝐵 → (((√‘2) · (𝐺‘(√‘𝑛))) + ((9 / 4) · (𝐺‘(𝑛 / 2)))) = (((√‘2) · (𝐺‘(√‘𝐵))) + ((9 / 4) · (𝐺‘(𝐵 / 2)))))
197 oveq2 6698 . . . . . . . 8 (𝑛 = 𝐵 → (2 · 𝑛) = (2 · 𝐵))
198197fveq2d 6233 . . . . . . 7 (𝑛 = 𝐵 → (√‘(2 · 𝑛)) = (√‘(2 · 𝐵)))
199198oveq2d 6706 . . . . . 6 (𝑛 = 𝐵 → ((log‘2) / (√‘(2 · 𝑛))) = ((log‘2) / (√‘(2 · 𝐵))))
200196, 199oveq12d 6708 . . . . 5 (𝑛 = 𝐵 → ((((√‘2) · (𝐺‘(√‘𝑛))) + ((9 / 4) · (𝐺‘(𝑛 / 2)))) + ((log‘2) / (√‘(2 · 𝑛)))) = ((((√‘2) · (𝐺‘(√‘𝐵))) + ((9 / 4) · (𝐺‘(𝐵 / 2)))) + ((log‘2) / (√‘(2 · 𝐵)))))
201 bposlem7.1 . . . . 5 𝐹 = (𝑛 ∈ ℕ ↦ ((((√‘2) · (𝐺‘(√‘𝑛))) + ((9 / 4) · (𝐺‘(𝑛 / 2)))) + ((log‘2) / (√‘(2 · 𝑛)))))
202 ovex 6718 . . . . 5 ((((√‘2) · (𝐺‘(√‘𝐵))) + ((9 / 4) · (𝐺‘(𝐵 / 2)))) + ((log‘2) / (√‘(2 · 𝐵)))) ∈ V
203200, 201, 202fvmpt 6321 . . . 4 (𝐵 ∈ ℕ → (𝐹𝐵) = ((((√‘2) · (𝐺‘(√‘𝐵))) + ((9 / 4) · (𝐺‘(𝐵 / 2)))) + ((log‘2) / (√‘(2 · 𝐵)))))
2041, 203syl 17 . . 3 (𝜑 → (𝐹𝐵) = ((((√‘2) · (𝐺‘(√‘𝐵))) + ((9 / 4) · (𝐺‘(𝐵 / 2)))) + ((log‘2) / (√‘(2 · 𝐵)))))
205 fveq2 6229 . . . . . . . . 9 (𝑛 = 𝐴 → (√‘𝑛) = (√‘𝐴))
206205fveq2d 6233 . . . . . . . 8 (𝑛 = 𝐴 → (𝐺‘(√‘𝑛)) = (𝐺‘(√‘𝐴)))
207206oveq2d 6706 . . . . . . 7 (𝑛 = 𝐴 → ((√‘2) · (𝐺‘(√‘𝑛))) = ((√‘2) · (𝐺‘(√‘𝐴))))
208 oveq1 6697 . . . . . . . . 9 (𝑛 = 𝐴 → (𝑛 / 2) = (𝐴 / 2))
209208fveq2d 6233 . . . . . . . 8 (𝑛 = 𝐴 → (𝐺‘(𝑛 / 2)) = (𝐺‘(𝐴 / 2)))
210209oveq2d 6706 . . . . . . 7 (𝑛 = 𝐴 → ((9 / 4) · (𝐺‘(𝑛 / 2))) = ((9 / 4) · (𝐺‘(𝐴 / 2))))
211207, 210oveq12d 6708 . . . . . 6 (𝑛 = 𝐴 → (((√‘2) · (𝐺‘(√‘𝑛))) + ((9 / 4) · (𝐺‘(𝑛 / 2)))) = (((√‘2) · (𝐺‘(√‘𝐴))) + ((9 / 4) · (𝐺‘(𝐴 / 2)))))
212 oveq2 6698 . . . . . . . 8 (𝑛 = 𝐴 → (2 · 𝑛) = (2 · 𝐴))
213212fveq2d 6233 . . . . . . 7 (𝑛 = 𝐴 → (√‘(2 · 𝑛)) = (√‘(2 · 𝐴)))
214213oveq2d 6706 . . . . . 6 (𝑛 = 𝐴 → ((log‘2) / (√‘(2 · 𝑛))) = ((log‘2) / (√‘(2 · 𝐴))))
215211, 214oveq12d 6708 . . . . 5 (𝑛 = 𝐴 → ((((√‘2) · (𝐺‘(√‘𝑛))) + ((9 / 4) · (𝐺‘(𝑛 / 2)))) + ((log‘2) / (√‘(2 · 𝑛)))) = ((((√‘2) · (𝐺‘(√‘𝐴))) + ((9 / 4) · (𝐺‘(𝐴 / 2)))) + ((log‘2) / (√‘(2 · 𝐴)))))
216 ovex 6718 . . . . 5 ((((√‘2) · (𝐺‘(√‘𝐴))) + ((9 / 4) · (𝐺‘(𝐴 / 2)))) + ((log‘2) / (√‘(2 · 𝐴)))) ∈ V
217215, 201, 216fvmpt 6321 . . . 4 (𝐴 ∈ ℕ → (𝐹𝐴) = ((((√‘2) · (𝐺‘(√‘𝐴))) + ((9 / 4) · (𝐺‘(𝐴 / 2)))) + ((log‘2) / (√‘(2 · 𝐴)))))
21811, 217syl 17 . . 3 (𝜑 → (𝐹𝐴) = ((((√‘2) · (𝐺‘(√‘𝐴))) + ((9 / 4) · (𝐺‘(𝐴 / 2)))) + ((log‘2) / (√‘(2 · 𝐴)))))
219204, 218breq12d 4698 . 2 (𝜑 → ((𝐹𝐵) < (𝐹𝐴) ↔ ((((√‘2) · (𝐺‘(√‘𝐵))) + ((9 / 4) · (𝐺‘(𝐵 / 2)))) + ((log‘2) / (√‘(2 · 𝐵)))) < ((((√‘2) · (𝐺‘(√‘𝐴))) + ((9 / 4) · (𝐺‘(𝐴 / 2)))) + ((log‘2) / (√‘(2 · 𝐴))))))
220189, 219sylibrd 249 1 (𝜑 → (𝐴 < 𝐵 → (𝐹𝐵) < (𝐹𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030   class class class wbr 4685  cmpt 4762  cfv 5926  (class class class)co 6690  cr 9973  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979   < clt 10112  cle 10113   / cdiv 10722  cn 11058  2c2 11108  3c3 11109  4c4 11110  9c9 11115  +crp 11870  cexp 12900  csqrt 14017  eceu 14837  logclog 24346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-ioc 12218  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901  df-fac 13101  df-bc 13130  df-hash 13158  df-shft 13851  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-limsup 14246  df-clim 14263  df-rlim 14264  df-sum 14461  df-ef 14842  df-e 14843  df-sin 14844  df-cos 14845  df-pi 14847  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-hom 16013  df-cco 16014  df-rest 16130  df-topn 16131  df-0g 16149  df-gsum 16150  df-topgen 16151  df-pt 16152  df-prds 16155  df-xrs 16209  df-qtop 16214  df-imas 16215  df-xps 16217  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-mulg 17588  df-cntz 17796  df-cmn 18241  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-fbas 19791  df-fg 19792  df-cnfld 19795  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cld 20871  df-ntr 20872  df-cls 20873  df-nei 20950  df-lp 20988  df-perf 20989  df-cn 21079  df-cnp 21080  df-haus 21167  df-tx 21413  df-hmeo 21606  df-fil 21697  df-fm 21789  df-flim 21790  df-flf 21791  df-xms 22172  df-ms 22173  df-tms 22174  df-cncf 22728  df-limc 23675  df-dv 23676  df-log 24348
This theorem is referenced by:  bposlem9  25062
  Copyright terms: Public domain W3C validator