MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bposlem6 Structured version   Visualization version   GIF version

Theorem bposlem6 24995
Description: Lemma for bpos 24999. By using the various bounds at our disposal, arrive at an inequality that is false for 𝑁 large enough. (Contributed by Mario Carneiro, 14-Mar-2014.) (Revised by Wolf Lammen, 12-Sep-2020.)
Hypotheses
Ref Expression
bpos.1 (𝜑𝑁 ∈ (ℤ‘5))
bpos.2 (𝜑 → ¬ ∃𝑝 ∈ ℙ (𝑁 < 𝑝𝑝 ≤ (2 · 𝑁)))
bpos.3 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt ((2 · 𝑁)C𝑁))), 1))
bpos.4 𝐾 = (⌊‘((2 · 𝑁) / 3))
bpos.5 𝑀 = (⌊‘(√‘(2 · 𝑁)))
Assertion
Ref Expression
bposlem6 (𝜑 → ((4↑𝑁) / 𝑁) < (((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)) · (2↑𝑐(((4 · 𝑁) / 3) − 5))))
Distinct variable groups:   𝐹,𝑝   𝑛,𝑝,𝐾   𝑀,𝑝   𝑛,𝑁,𝑝   𝜑,𝑛,𝑝
Allowed substitution hints:   𝐹(𝑛)   𝑀(𝑛)

Proof of Theorem bposlem6
StepHypRef Expression
1 4nn 11172 . . . . 5 4 ∈ ℕ
2 5nn 11173 . . . . . . 7 5 ∈ ℕ
3 bpos.1 . . . . . . 7 (𝜑𝑁 ∈ (ℤ‘5))
4 eluznn 11743 . . . . . . 7 ((5 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘5)) → 𝑁 ∈ ℕ)
52, 3, 4sylancr 694 . . . . . 6 (𝜑𝑁 ∈ ℕ)
65nnnn0d 11336 . . . . 5 (𝜑𝑁 ∈ ℕ0)
7 nnexpcl 12856 . . . . 5 ((4 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (4↑𝑁) ∈ ℕ)
81, 6, 7sylancr 694 . . . 4 (𝜑 → (4↑𝑁) ∈ ℕ)
98nnred 11020 . . 3 (𝜑 → (4↑𝑁) ∈ ℝ)
109, 5nndivred 11054 . 2 (𝜑 → ((4↑𝑁) / 𝑁) ∈ ℝ)
11 fzctr 12435 . . . . 5 (𝑁 ∈ ℕ0𝑁 ∈ (0...(2 · 𝑁)))
126, 11syl 17 . . . 4 (𝜑𝑁 ∈ (0...(2 · 𝑁)))
13 bccl2 13093 . . . 4 (𝑁 ∈ (0...(2 · 𝑁)) → ((2 · 𝑁)C𝑁) ∈ ℕ)
1412, 13syl 17 . . 3 (𝜑 → ((2 · 𝑁)C𝑁) ∈ ℕ)
1514nnred 11020 . 2 (𝜑 → ((2 · 𝑁)C𝑁) ∈ ℝ)
16 2nn 11170 . . . . . . 7 2 ∈ ℕ
17 nnmulcl 11028 . . . . . . 7 ((2 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2 · 𝑁) ∈ ℕ)
1816, 5, 17sylancr 694 . . . . . 6 (𝜑 → (2 · 𝑁) ∈ ℕ)
1918nnrpd 11855 . . . . 5 (𝜑 → (2 · 𝑁) ∈ ℝ+)
2018nnred 11020 . . . . . . . 8 (𝜑 → (2 · 𝑁) ∈ ℝ)
2119rpge0d 11861 . . . . . . . 8 (𝜑 → 0 ≤ (2 · 𝑁))
2220, 21resqrtcld 14137 . . . . . . 7 (𝜑 → (√‘(2 · 𝑁)) ∈ ℝ)
23 3nn 11171 . . . . . . 7 3 ∈ ℕ
24 nndivre 11041 . . . . . . 7 (((√‘(2 · 𝑁)) ∈ ℝ ∧ 3 ∈ ℕ) → ((√‘(2 · 𝑁)) / 3) ∈ ℝ)
2522, 23, 24sylancl 693 . . . . . 6 (𝜑 → ((√‘(2 · 𝑁)) / 3) ∈ ℝ)
26 2re 11075 . . . . . 6 2 ∈ ℝ
27 readdcl 10004 . . . . . 6 ((((√‘(2 · 𝑁)) / 3) ∈ ℝ ∧ 2 ∈ ℝ) → (((√‘(2 · 𝑁)) / 3) + 2) ∈ ℝ)
2825, 26, 27sylancl 693 . . . . 5 (𝜑 → (((√‘(2 · 𝑁)) / 3) + 2) ∈ ℝ)
2919, 28rpcxpcld 24457 . . . 4 (𝜑 → ((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)) ∈ ℝ+)
3029rpred 11857 . . 3 (𝜑 → ((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)) ∈ ℝ)
31 2rp 11822 . . . . 5 2 ∈ ℝ+
32 nnmulcl 11028 . . . . . . . . 9 ((4 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (4 · 𝑁) ∈ ℕ)
331, 5, 32sylancr 694 . . . . . . . 8 (𝜑 → (4 · 𝑁) ∈ ℕ)
3433nnred 11020 . . . . . . 7 (𝜑 → (4 · 𝑁) ∈ ℝ)
35 nndivre 11041 . . . . . . 7 (((4 · 𝑁) ∈ ℝ ∧ 3 ∈ ℕ) → ((4 · 𝑁) / 3) ∈ ℝ)
3634, 23, 35sylancl 693 . . . . . 6 (𝜑 → ((4 · 𝑁) / 3) ∈ ℝ)
37 5re 11084 . . . . . 6 5 ∈ ℝ
38 resubcl 10330 . . . . . 6 ((((4 · 𝑁) / 3) ∈ ℝ ∧ 5 ∈ ℝ) → (((4 · 𝑁) / 3) − 5) ∈ ℝ)
3936, 37, 38sylancl 693 . . . . 5 (𝜑 → (((4 · 𝑁) / 3) − 5) ∈ ℝ)
40 rpcxpcl 24403 . . . . 5 ((2 ∈ ℝ+ ∧ (((4 · 𝑁) / 3) − 5) ∈ ℝ) → (2↑𝑐(((4 · 𝑁) / 3) − 5)) ∈ ℝ+)
4131, 39, 40sylancr 694 . . . 4 (𝜑 → (2↑𝑐(((4 · 𝑁) / 3) − 5)) ∈ ℝ+)
4241rpred 11857 . . 3 (𝜑 → (2↑𝑐(((4 · 𝑁) / 3) − 5)) ∈ ℝ)
4330, 42remulcld 10055 . 2 (𝜑 → (((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)) · (2↑𝑐(((4 · 𝑁) / 3) − 5))) ∈ ℝ)
44 df-5 11067 . . . . 5 5 = (4 + 1)
45 4z 11396 . . . . . 6 4 ∈ ℤ
46 uzid 11687 . . . . . 6 (4 ∈ ℤ → 4 ∈ (ℤ‘4))
47 peano2uz 11726 . . . . . 6 (4 ∈ (ℤ‘4) → (4 + 1) ∈ (ℤ‘4))
4845, 46, 47mp2b 10 . . . . 5 (4 + 1) ∈ (ℤ‘4)
4944, 48eqeltri 2695 . . . 4 5 ∈ (ℤ‘4)
50 eqid 2620 . . . . 5 (ℤ‘4) = (ℤ‘4)
5150uztrn2 11690 . . . 4 ((5 ∈ (ℤ‘4) ∧ 𝑁 ∈ (ℤ‘5)) → 𝑁 ∈ (ℤ‘4))
5249, 3, 51sylancr 694 . . 3 (𝜑𝑁 ∈ (ℤ‘4))
53 bclbnd 24986 . . 3 (𝑁 ∈ (ℤ‘4) → ((4↑𝑁) / 𝑁) < ((2 · 𝑁)C𝑁))
5452, 53syl 17 . 2 (𝜑 → ((4↑𝑁) / 𝑁) < ((2 · 𝑁)C𝑁))
55 bpos.3 . . . . . . . 8 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt ((2 · 𝑁)C𝑁))), 1))
56 id 22 . . . . . . . . . 10 (𝑛 ∈ ℙ → 𝑛 ∈ ℙ)
57 pccl 15535 . . . . . . . . . 10 ((𝑛 ∈ ℙ ∧ ((2 · 𝑁)C𝑁) ∈ ℕ) → (𝑛 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ0)
5856, 14, 57syl2anr 495 . . . . . . . . 9 ((𝜑𝑛 ∈ ℙ) → (𝑛 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ0)
5958ralrimiva 2963 . . . . . . . 8 (𝜑 → ∀𝑛 ∈ ℙ (𝑛 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ0)
6055, 59pcmptcl 15576 . . . . . . 7 (𝜑 → (𝐹:ℕ⟶ℕ ∧ seq1( · , 𝐹):ℕ⟶ℕ))
6160simprd 479 . . . . . 6 (𝜑 → seq1( · , 𝐹):ℕ⟶ℕ)
62 bpos.2 . . . . . . . . 9 (𝜑 → ¬ ∃𝑝 ∈ ℙ (𝑁 < 𝑝𝑝 ≤ (2 · 𝑁)))
63 bpos.4 . . . . . . . . 9 𝐾 = (⌊‘((2 · 𝑁) / 3))
64 bpos.5 . . . . . . . . 9 𝑀 = (⌊‘(√‘(2 · 𝑁)))
653, 62, 55, 63, 64bposlem4 24993 . . . . . . . 8 (𝜑𝑀 ∈ (3...𝐾))
66 elfzuz 12323 . . . . . . . 8 (𝑀 ∈ (3...𝐾) → 𝑀 ∈ (ℤ‘3))
6765, 66syl 17 . . . . . . 7 (𝜑𝑀 ∈ (ℤ‘3))
68 eluznn 11743 . . . . . . 7 ((3 ∈ ℕ ∧ 𝑀 ∈ (ℤ‘3)) → 𝑀 ∈ ℕ)
6923, 67, 68sylancr 694 . . . . . 6 (𝜑𝑀 ∈ ℕ)
7061, 69ffvelrnd 6346 . . . . 5 (𝜑 → (seq1( · , 𝐹)‘𝑀) ∈ ℕ)
7170nnred 11020 . . . 4 (𝜑 → (seq1( · , 𝐹)‘𝑀) ∈ ℝ)
72 2z 11394 . . . . . . . . 9 2 ∈ ℤ
73 nndivre 11041 . . . . . . . . . . . 12 (((2 · 𝑁) ∈ ℝ ∧ 3 ∈ ℕ) → ((2 · 𝑁) / 3) ∈ ℝ)
7420, 23, 73sylancl 693 . . . . . . . . . . 11 (𝜑 → ((2 · 𝑁) / 3) ∈ ℝ)
7574flcld 12582 . . . . . . . . . 10 (𝜑 → (⌊‘((2 · 𝑁) / 3)) ∈ ℤ)
7663, 75syl5eqel 2703 . . . . . . . . 9 (𝜑𝐾 ∈ ℤ)
77 zmulcl 11411 . . . . . . . . 9 ((2 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (2 · 𝐾) ∈ ℤ)
7872, 76, 77sylancr 694 . . . . . . . 8 (𝜑 → (2 · 𝐾) ∈ ℤ)
792nnzi 11386 . . . . . . . 8 5 ∈ ℤ
80 zsubcl 11404 . . . . . . . 8 (((2 · 𝐾) ∈ ℤ ∧ 5 ∈ ℤ) → ((2 · 𝐾) − 5) ∈ ℤ)
8178, 79, 80sylancl 693 . . . . . . 7 (𝜑 → ((2 · 𝐾) − 5) ∈ ℤ)
8281zred 11467 . . . . . 6 (𝜑 → ((2 · 𝐾) − 5) ∈ ℝ)
83 rpcxpcl 24403 . . . . . 6 ((2 ∈ ℝ+ ∧ ((2 · 𝐾) − 5) ∈ ℝ) → (2↑𝑐((2 · 𝐾) − 5)) ∈ ℝ+)
8431, 82, 83sylancr 694 . . . . 5 (𝜑 → (2↑𝑐((2 · 𝐾) − 5)) ∈ ℝ+)
8584rpred 11857 . . . 4 (𝜑 → (2↑𝑐((2 · 𝐾) − 5)) ∈ ℝ)
8671, 85remulcld 10055 . . 3 (𝜑 → ((seq1( · , 𝐹)‘𝑀) · (2↑𝑐((2 · 𝐾) − 5))) ∈ ℝ)
873, 62, 55, 63bposlem3 24992 . . . 4 (𝜑 → (seq1( · , 𝐹)‘𝐾) = ((2 · 𝑁)C𝑁))
88 elfzuz3 12324 . . . . . . . . . 10 (𝑀 ∈ (3...𝐾) → 𝐾 ∈ (ℤ𝑀))
8965, 88syl 17 . . . . . . . . 9 (𝜑𝐾 ∈ (ℤ𝑀))
9055, 59, 69, 89pcmptdvds 15579 . . . . . . . 8 (𝜑 → (seq1( · , 𝐹)‘𝑀) ∥ (seq1( · , 𝐹)‘𝐾))
9170nnzd 11466 . . . . . . . . 9 (𝜑 → (seq1( · , 𝐹)‘𝑀) ∈ ℤ)
9270nnne0d 11050 . . . . . . . . 9 (𝜑 → (seq1( · , 𝐹)‘𝑀) ≠ 0)
93 uztrn 11689 . . . . . . . . . . . . 13 ((𝐾 ∈ (ℤ𝑀) ∧ 𝑀 ∈ (ℤ‘3)) → 𝐾 ∈ (ℤ‘3))
9489, 67, 93syl2anc 692 . . . . . . . . . . . 12 (𝜑𝐾 ∈ (ℤ‘3))
95 eluznn 11743 . . . . . . . . . . . 12 ((3 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘3)) → 𝐾 ∈ ℕ)
9623, 94, 95sylancr 694 . . . . . . . . . . 11 (𝜑𝐾 ∈ ℕ)
9761, 96ffvelrnd 6346 . . . . . . . . . 10 (𝜑 → (seq1( · , 𝐹)‘𝐾) ∈ ℕ)
9897nnzd 11466 . . . . . . . . 9 (𝜑 → (seq1( · , 𝐹)‘𝐾) ∈ ℤ)
99 dvdsval2 14967 . . . . . . . . 9 (((seq1( · , 𝐹)‘𝑀) ∈ ℤ ∧ (seq1( · , 𝐹)‘𝑀) ≠ 0 ∧ (seq1( · , 𝐹)‘𝐾) ∈ ℤ) → ((seq1( · , 𝐹)‘𝑀) ∥ (seq1( · , 𝐹)‘𝐾) ↔ ((seq1( · , 𝐹)‘𝐾) / (seq1( · , 𝐹)‘𝑀)) ∈ ℤ))
10091, 92, 98, 99syl3anc 1324 . . . . . . . 8 (𝜑 → ((seq1( · , 𝐹)‘𝑀) ∥ (seq1( · , 𝐹)‘𝐾) ↔ ((seq1( · , 𝐹)‘𝐾) / (seq1( · , 𝐹)‘𝑀)) ∈ ℤ))
10190, 100mpbid 222 . . . . . . 7 (𝜑 → ((seq1( · , 𝐹)‘𝐾) / (seq1( · , 𝐹)‘𝑀)) ∈ ℤ)
102101zred 11467 . . . . . 6 (𝜑 → ((seq1( · , 𝐹)‘𝐾) / (seq1( · , 𝐹)‘𝑀)) ∈ ℝ)
10369nnred 11020 . . . . . . . . 9 (𝜑𝑀 ∈ ℝ)
10476zred 11467 . . . . . . . . 9 (𝜑𝐾 ∈ ℝ)
105 eluzle 11685 . . . . . . . . . 10 (𝐾 ∈ (ℤ𝑀) → 𝑀𝐾)
10689, 105syl 17 . . . . . . . . 9 (𝜑𝑀𝐾)
107 efchtdvds 24866 . . . . . . . . 9 ((𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑀𝐾) → (exp‘(θ‘𝑀)) ∥ (exp‘(θ‘𝐾)))
108103, 104, 106, 107syl3anc 1324 . . . . . . . 8 (𝜑 → (exp‘(θ‘𝑀)) ∥ (exp‘(θ‘𝐾)))
109 efchtcl 24818 . . . . . . . . . . 11 (𝑀 ∈ ℝ → (exp‘(θ‘𝑀)) ∈ ℕ)
110103, 109syl 17 . . . . . . . . . 10 (𝜑 → (exp‘(θ‘𝑀)) ∈ ℕ)
111110nnzd 11466 . . . . . . . . 9 (𝜑 → (exp‘(θ‘𝑀)) ∈ ℤ)
112110nnne0d 11050 . . . . . . . . 9 (𝜑 → (exp‘(θ‘𝑀)) ≠ 0)
113 efchtcl 24818 . . . . . . . . . . 11 (𝐾 ∈ ℝ → (exp‘(θ‘𝐾)) ∈ ℕ)
114104, 113syl 17 . . . . . . . . . 10 (𝜑 → (exp‘(θ‘𝐾)) ∈ ℕ)
115114nnzd 11466 . . . . . . . . 9 (𝜑 → (exp‘(θ‘𝐾)) ∈ ℤ)
116 dvdsval2 14967 . . . . . . . . 9 (((exp‘(θ‘𝑀)) ∈ ℤ ∧ (exp‘(θ‘𝑀)) ≠ 0 ∧ (exp‘(θ‘𝐾)) ∈ ℤ) → ((exp‘(θ‘𝑀)) ∥ (exp‘(θ‘𝐾)) ↔ ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))) ∈ ℤ))
117111, 112, 115, 116syl3anc 1324 . . . . . . . 8 (𝜑 → ((exp‘(θ‘𝑀)) ∥ (exp‘(θ‘𝐾)) ↔ ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))) ∈ ℤ))
118108, 117mpbid 222 . . . . . . 7 (𝜑 → ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))) ∈ ℤ)
119118zred 11467 . . . . . 6 (𝜑 → ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))) ∈ ℝ)
120 prmz 15370 . . . . . . . . . . . . . . . . . 18 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
121 fllt 12590 . . . . . . . . . . . . . . . . . 18 (((√‘(2 · 𝑁)) ∈ ℝ ∧ 𝑝 ∈ ℤ) → ((√‘(2 · 𝑁)) < 𝑝 ↔ (⌊‘(√‘(2 · 𝑁))) < 𝑝))
12222, 120, 121syl2an 494 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ ℙ) → ((√‘(2 · 𝑁)) < 𝑝 ↔ (⌊‘(√‘(2 · 𝑁))) < 𝑝))
12364breq1i 4651 . . . . . . . . . . . . . . . . 17 (𝑀 < 𝑝 ↔ (⌊‘(√‘(2 · 𝑁))) < 𝑝)
124122, 123syl6bbr 278 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ ℙ) → ((√‘(2 · 𝑁)) < 𝑝𝑀 < 𝑝))
125120zred 11467 . . . . . . . . . . . . . . . . 17 (𝑝 ∈ ℙ → 𝑝 ∈ ℝ)
126 ltnle 10102 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℝ ∧ 𝑝 ∈ ℝ) → (𝑀 < 𝑝 ↔ ¬ 𝑝𝑀))
127103, 125, 126syl2an 494 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ ℙ) → (𝑀 < 𝑝 ↔ ¬ 𝑝𝑀))
128124, 127bitrd 268 . . . . . . . . . . . . . . 15 ((𝜑𝑝 ∈ ℙ) → ((√‘(2 · 𝑁)) < 𝑝 ↔ ¬ 𝑝𝑀))
129 bposlem1 24990 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝↑(𝑝 pCnt ((2 · 𝑁)C𝑁))) ≤ (2 · 𝑁))
1305, 129sylan 488 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑝 ∈ ℙ) → (𝑝↑(𝑝 pCnt ((2 · 𝑁)C𝑁))) ≤ (2 · 𝑁))
131125adantl 482 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑝 ∈ ℙ) → 𝑝 ∈ ℝ)
132 id 22 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 ∈ ℙ → 𝑝 ∈ ℙ)
133 pccl 15535 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑝 ∈ ℙ ∧ ((2 · 𝑁)C𝑁) ∈ ℕ) → (𝑝 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ0)
134132, 14, 133syl2anr 495 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑝 ∈ ℙ) → (𝑝 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ0)
135131, 134reexpcld 13008 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑝 ∈ ℙ) → (𝑝↑(𝑝 pCnt ((2 · 𝑁)C𝑁))) ∈ ℝ)
13620adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑝 ∈ ℙ) → (2 · 𝑁) ∈ ℝ)
137131resqcld 13018 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑝 ∈ ℙ) → (𝑝↑2) ∈ ℝ)
138 lelttr 10113 . . . . . . . . . . . . . . . . . . . 20 (((𝑝↑(𝑝 pCnt ((2 · 𝑁)C𝑁))) ∈ ℝ ∧ (2 · 𝑁) ∈ ℝ ∧ (𝑝↑2) ∈ ℝ) → (((𝑝↑(𝑝 pCnt ((2 · 𝑁)C𝑁))) ≤ (2 · 𝑁) ∧ (2 · 𝑁) < (𝑝↑2)) → (𝑝↑(𝑝 pCnt ((2 · 𝑁)C𝑁))) < (𝑝↑2)))
139135, 136, 137, 138syl3anc 1324 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑝 ∈ ℙ) → (((𝑝↑(𝑝 pCnt ((2 · 𝑁)C𝑁))) ≤ (2 · 𝑁) ∧ (2 · 𝑁) < (𝑝↑2)) → (𝑝↑(𝑝 pCnt ((2 · 𝑁)C𝑁))) < (𝑝↑2)))
140130, 139mpand 710 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑝 ∈ ℙ) → ((2 · 𝑁) < (𝑝↑2) → (𝑝↑(𝑝 pCnt ((2 · 𝑁)C𝑁))) < (𝑝↑2)))
141 resqrtth 13977 . . . . . . . . . . . . . . . . . . . . 21 (((2 · 𝑁) ∈ ℝ ∧ 0 ≤ (2 · 𝑁)) → ((√‘(2 · 𝑁))↑2) = (2 · 𝑁))
14220, 21, 141syl2anc 692 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((√‘(2 · 𝑁))↑2) = (2 · 𝑁))
143142breq1d 4654 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (((√‘(2 · 𝑁))↑2) < (𝑝↑2) ↔ (2 · 𝑁) < (𝑝↑2)))
144143adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑝 ∈ ℙ) → (((√‘(2 · 𝑁))↑2) < (𝑝↑2) ↔ (2 · 𝑁) < (𝑝↑2)))
145134nn0zd 11465 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑝 ∈ ℙ) → (𝑝 pCnt ((2 · 𝑁)C𝑁)) ∈ ℤ)
14672a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑝 ∈ ℙ) → 2 ∈ ℤ)
147 prmgt1 15390 . . . . . . . . . . . . . . . . . . . 20 (𝑝 ∈ ℙ → 1 < 𝑝)
148147adantl 482 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑝 ∈ ℙ) → 1 < 𝑝)
149131, 145, 146, 148ltexp2d 13021 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑝 ∈ ℙ) → ((𝑝 pCnt ((2 · 𝑁)C𝑁)) < 2 ↔ (𝑝↑(𝑝 pCnt ((2 · 𝑁)C𝑁))) < (𝑝↑2)))
150140, 144, 1493imtr4d 283 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ ℙ) → (((√‘(2 · 𝑁))↑2) < (𝑝↑2) → (𝑝 pCnt ((2 · 𝑁)C𝑁)) < 2))
151 df-2 11064 . . . . . . . . . . . . . . . . . 18 2 = (1 + 1)
152151breq2i 4652 . . . . . . . . . . . . . . . . 17 ((𝑝 pCnt ((2 · 𝑁)C𝑁)) < 2 ↔ (𝑝 pCnt ((2 · 𝑁)C𝑁)) < (1 + 1))
153150, 152syl6ib 241 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ ℙ) → (((√‘(2 · 𝑁))↑2) < (𝑝↑2) → (𝑝 pCnt ((2 · 𝑁)C𝑁)) < (1 + 1)))
15422adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ ℙ) → (√‘(2 · 𝑁)) ∈ ℝ)
15520, 21sqrtge0d 14140 . . . . . . . . . . . . . . . . . 18 (𝜑 → 0 ≤ (√‘(2 · 𝑁)))
156155adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ ℙ) → 0 ≤ (√‘(2 · 𝑁)))
157 prmnn 15369 . . . . . . . . . . . . . . . . . . . 20 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
158157nnrpd 11855 . . . . . . . . . . . . . . . . . . 19 (𝑝 ∈ ℙ → 𝑝 ∈ ℝ+)
159158rpge0d 11861 . . . . . . . . . . . . . . . . . 18 (𝑝 ∈ ℙ → 0 ≤ 𝑝)
160159adantl 482 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ ℙ) → 0 ≤ 𝑝)
161154, 131, 156, 160lt2sqd 13026 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ ℙ) → ((√‘(2 · 𝑁)) < 𝑝 ↔ ((√‘(2 · 𝑁))↑2) < (𝑝↑2)))
162 1z 11392 . . . . . . . . . . . . . . . . 17 1 ∈ ℤ
163 zleltp1 11413 . . . . . . . . . . . . . . . . 17 (((𝑝 pCnt ((2 · 𝑁)C𝑁)) ∈ ℤ ∧ 1 ∈ ℤ) → ((𝑝 pCnt ((2 · 𝑁)C𝑁)) ≤ 1 ↔ (𝑝 pCnt ((2 · 𝑁)C𝑁)) < (1 + 1)))
164145, 162, 163sylancl 693 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ ℙ) → ((𝑝 pCnt ((2 · 𝑁)C𝑁)) ≤ 1 ↔ (𝑝 pCnt ((2 · 𝑁)C𝑁)) < (1 + 1)))
165153, 161, 1643imtr4d 283 . . . . . . . . . . . . . . 15 ((𝜑𝑝 ∈ ℙ) → ((√‘(2 · 𝑁)) < 𝑝 → (𝑝 pCnt ((2 · 𝑁)C𝑁)) ≤ 1))
166128, 165sylbird 250 . . . . . . . . . . . . . 14 ((𝜑𝑝 ∈ ℙ) → (¬ 𝑝𝑀 → (𝑝 pCnt ((2 · 𝑁)C𝑁)) ≤ 1))
167166imp 445 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ ℙ) ∧ ¬ 𝑝𝑀) → (𝑝 pCnt ((2 · 𝑁)C𝑁)) ≤ 1)
168167adantrl 751 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝐾 ∧ ¬ 𝑝𝑀)) → (𝑝 pCnt ((2 · 𝑁)C𝑁)) ≤ 1)
169 iftrue 4083 . . . . . . . . . . . . 13 ((𝑝𝐾 ∧ ¬ 𝑝𝑀) → if((𝑝𝐾 ∧ ¬ 𝑝𝑀), (𝑝 pCnt ((2 · 𝑁)C𝑁)), 0) = (𝑝 pCnt ((2 · 𝑁)C𝑁)))
170169adantl 482 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝐾 ∧ ¬ 𝑝𝑀)) → if((𝑝𝐾 ∧ ¬ 𝑝𝑀), (𝑝 pCnt ((2 · 𝑁)C𝑁)), 0) = (𝑝 pCnt ((2 · 𝑁)C𝑁)))
171 iftrue 4083 . . . . . . . . . . . . 13 ((𝑝𝐾 ∧ ¬ 𝑝𝑀) → if((𝑝𝐾 ∧ ¬ 𝑝𝑀), 1, 0) = 1)
172171adantl 482 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝐾 ∧ ¬ 𝑝𝑀)) → if((𝑝𝐾 ∧ ¬ 𝑝𝑀), 1, 0) = 1)
173168, 170, 1723brtr4d 4676 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝐾 ∧ ¬ 𝑝𝑀)) → if((𝑝𝐾 ∧ ¬ 𝑝𝑀), (𝑝 pCnt ((2 · 𝑁)C𝑁)), 0) ≤ if((𝑝𝐾 ∧ ¬ 𝑝𝑀), 1, 0))
174 0le0 11095 . . . . . . . . . . . . 13 0 ≤ 0
175 iffalse 4086 . . . . . . . . . . . . . 14 (¬ (𝑝𝐾 ∧ ¬ 𝑝𝑀) → if((𝑝𝐾 ∧ ¬ 𝑝𝑀), (𝑝 pCnt ((2 · 𝑁)C𝑁)), 0) = 0)
176 iffalse 4086 . . . . . . . . . . . . . 14 (¬ (𝑝𝐾 ∧ ¬ 𝑝𝑀) → if((𝑝𝐾 ∧ ¬ 𝑝𝑀), 1, 0) = 0)
177175, 176breq12d 4657 . . . . . . . . . . . . 13 (¬ (𝑝𝐾 ∧ ¬ 𝑝𝑀) → (if((𝑝𝐾 ∧ ¬ 𝑝𝑀), (𝑝 pCnt ((2 · 𝑁)C𝑁)), 0) ≤ if((𝑝𝐾 ∧ ¬ 𝑝𝑀), 1, 0) ↔ 0 ≤ 0))
178174, 177mpbiri 248 . . . . . . . . . . . 12 (¬ (𝑝𝐾 ∧ ¬ 𝑝𝑀) → if((𝑝𝐾 ∧ ¬ 𝑝𝑀), (𝑝 pCnt ((2 · 𝑁)C𝑁)), 0) ≤ if((𝑝𝐾 ∧ ¬ 𝑝𝑀), 1, 0))
179178adantl 482 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ ¬ (𝑝𝐾 ∧ ¬ 𝑝𝑀)) → if((𝑝𝐾 ∧ ¬ 𝑝𝑀), (𝑝 pCnt ((2 · 𝑁)C𝑁)), 0) ≤ if((𝑝𝐾 ∧ ¬ 𝑝𝑀), 1, 0))
180173, 179pm2.61dan 831 . . . . . . . . . 10 ((𝜑𝑝 ∈ ℙ) → if((𝑝𝐾 ∧ ¬ 𝑝𝑀), (𝑝 pCnt ((2 · 𝑁)C𝑁)), 0) ≤ if((𝑝𝐾 ∧ ¬ 𝑝𝑀), 1, 0))
18159adantr 481 . . . . . . . . . . 11 ((𝜑𝑝 ∈ ℙ) → ∀𝑛 ∈ ℙ (𝑛 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ0)
18269adantr 481 . . . . . . . . . . 11 ((𝜑𝑝 ∈ ℙ) → 𝑀 ∈ ℕ)
183 simpr 477 . . . . . . . . . . 11 ((𝜑𝑝 ∈ ℙ) → 𝑝 ∈ ℙ)
184 oveq1 6642 . . . . . . . . . . 11 (𝑛 = 𝑝 → (𝑛 pCnt ((2 · 𝑁)C𝑁)) = (𝑝 pCnt ((2 · 𝑁)C𝑁)))
18589adantr 481 . . . . . . . . . . 11 ((𝜑𝑝 ∈ ℙ) → 𝐾 ∈ (ℤ𝑀))
18655, 181, 182, 183, 184, 185pcmpt2 15578 . . . . . . . . . 10 ((𝜑𝑝 ∈ ℙ) → (𝑝 pCnt ((seq1( · , 𝐹)‘𝐾) / (seq1( · , 𝐹)‘𝑀))) = if((𝑝𝐾 ∧ ¬ 𝑝𝑀), (𝑝 pCnt ((2 · 𝑁)C𝑁)), 0))
187 eqid 2620 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1))
188187prmorcht 24885 . . . . . . . . . . . . . . 15 (𝐾 ∈ ℕ → (exp‘(θ‘𝐾)) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘𝐾))
18996, 188syl 17 . . . . . . . . . . . . . 14 (𝜑 → (exp‘(θ‘𝐾)) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘𝐾))
190187prmorcht 24885 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ → (exp‘(θ‘𝑀)) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘𝑀))
19169, 190syl 17 . . . . . . . . . . . . . 14 (𝜑 → (exp‘(θ‘𝑀)) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘𝑀))
192189, 191oveq12d 6653 . . . . . . . . . . . . 13 (𝜑 → ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))) = ((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘𝐾) / (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘𝑀)))
193192adantr 481 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ ℙ) → ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))) = ((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘𝐾) / (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘𝑀)))
194193oveq2d 6651 . . . . . . . . . . 11 ((𝜑𝑝 ∈ ℙ) → (𝑝 pCnt ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀)))) = (𝑝 pCnt ((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘𝐾) / (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘𝑀))))
195 nncn 11013 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
196195exp1d 12986 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (𝑛↑1) = 𝑛)
197196ifeq1d 4095 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → if(𝑛 ∈ ℙ, (𝑛↑1), 1) = if(𝑛 ∈ ℙ, 𝑛, 1))
198197mpteq2ia 4731 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑1), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1))
199198eqcomi 2629 . . . . . . . . . . . 12 (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑1), 1))
200 1nn0 11293 . . . . . . . . . . . . . . 15 1 ∈ ℕ0
201200a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℙ) → 1 ∈ ℕ0)
202201ralrimiva 2963 . . . . . . . . . . . . 13 (𝜑 → ∀𝑛 ∈ ℙ 1 ∈ ℕ0)
203202adantr 481 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ ℙ) → ∀𝑛 ∈ ℙ 1 ∈ ℕ0)
204 eqidd 2621 . . . . . . . . . . . 12 (𝑛 = 𝑝 → 1 = 1)
205199, 203, 182, 183, 204, 185pcmpt2 15578 . . . . . . . . . . 11 ((𝜑𝑝 ∈ ℙ) → (𝑝 pCnt ((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘𝐾) / (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘𝑀))) = if((𝑝𝐾 ∧ ¬ 𝑝𝑀), 1, 0))
206194, 205eqtrd 2654 . . . . . . . . . 10 ((𝜑𝑝 ∈ ℙ) → (𝑝 pCnt ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀)))) = if((𝑝𝐾 ∧ ¬ 𝑝𝑀), 1, 0))
207180, 186, 2063brtr4d 4676 . . . . . . . . 9 ((𝜑𝑝 ∈ ℙ) → (𝑝 pCnt ((seq1( · , 𝐹)‘𝐾) / (seq1( · , 𝐹)‘𝑀))) ≤ (𝑝 pCnt ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀)))))
208207ralrimiva 2963 . . . . . . . 8 (𝜑 → ∀𝑝 ∈ ℙ (𝑝 pCnt ((seq1( · , 𝐹)‘𝐾) / (seq1( · , 𝐹)‘𝑀))) ≤ (𝑝 pCnt ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀)))))
209 pc2dvds 15564 . . . . . . . . 9 ((((seq1( · , 𝐹)‘𝐾) / (seq1( · , 𝐹)‘𝑀)) ∈ ℤ ∧ ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))) ∈ ℤ) → (((seq1( · , 𝐹)‘𝐾) / (seq1( · , 𝐹)‘𝑀)) ∥ ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt ((seq1( · , 𝐹)‘𝐾) / (seq1( · , 𝐹)‘𝑀))) ≤ (𝑝 pCnt ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))))))
210101, 118, 209syl2anc 692 . . . . . . . 8 (𝜑 → (((seq1( · , 𝐹)‘𝐾) / (seq1( · , 𝐹)‘𝑀)) ∥ ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt ((seq1( · , 𝐹)‘𝐾) / (seq1( · , 𝐹)‘𝑀))) ≤ (𝑝 pCnt ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))))))
211208, 210mpbird 247 . . . . . . 7 (𝜑 → ((seq1( · , 𝐹)‘𝐾) / (seq1( · , 𝐹)‘𝑀)) ∥ ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))))
212114nnred 11020 . . . . . . . . . 10 (𝜑 → (exp‘(θ‘𝐾)) ∈ ℝ)
213110nnred 11020 . . . . . . . . . 10 (𝜑 → (exp‘(θ‘𝑀)) ∈ ℝ)
214114nngt0d 11049 . . . . . . . . . 10 (𝜑 → 0 < (exp‘(θ‘𝐾)))
215110nngt0d 11049 . . . . . . . . . 10 (𝜑 → 0 < (exp‘(θ‘𝑀)))
216212, 213, 214, 215divgt0d 10944 . . . . . . . . 9 (𝜑 → 0 < ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))))
217 elnnz 11372 . . . . . . . . 9 (((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))) ∈ ℕ ↔ (((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))) ∈ ℤ ∧ 0 < ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀)))))
218118, 216, 217sylanbrc 697 . . . . . . . 8 (𝜑 → ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))) ∈ ℕ)
219 dvdsle 15013 . . . . . . . 8 ((((seq1( · , 𝐹)‘𝐾) / (seq1( · , 𝐹)‘𝑀)) ∈ ℤ ∧ ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))) ∈ ℕ) → (((seq1( · , 𝐹)‘𝐾) / (seq1( · , 𝐹)‘𝑀)) ∥ ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))) → ((seq1( · , 𝐹)‘𝐾) / (seq1( · , 𝐹)‘𝑀)) ≤ ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀)))))
220101, 218, 219syl2anc 692 . . . . . . 7 (𝜑 → (((seq1( · , 𝐹)‘𝐾) / (seq1( · , 𝐹)‘𝑀)) ∥ ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))) → ((seq1( · , 𝐹)‘𝐾) / (seq1( · , 𝐹)‘𝑀)) ≤ ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀)))))
221211, 220mpd 15 . . . . . 6 (𝜑 → ((seq1( · , 𝐹)‘𝐾) / (seq1( · , 𝐹)‘𝑀)) ≤ ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))))
222 nndivre 11041 . . . . . . . 8 (((exp‘(θ‘𝐾)) ∈ ℝ ∧ 4 ∈ ℕ) → ((exp‘(θ‘𝐾)) / 4) ∈ ℝ)
223212, 1, 222sylancl 693 . . . . . . 7 (𝜑 → ((exp‘(θ‘𝐾)) / 4) ∈ ℝ)
224 4re 11082 . . . . . . . . . 10 4 ∈ ℝ
225224a1i 11 . . . . . . . . 9 (𝜑 → 4 ∈ ℝ)
226 6re 11086 . . . . . . . . . 10 6 ∈ ℝ
227226a1i 11 . . . . . . . . 9 (𝜑 → 6 ∈ ℝ)
228 4lt6 11190 . . . . . . . . . 10 4 < 6
229228a1i 11 . . . . . . . . 9 (𝜑 → 4 < 6)
230 cht3 24880 . . . . . . . . . . . 12 (θ‘3) = (log‘6)
231230fveq2i 6181 . . . . . . . . . . 11 (exp‘(θ‘3)) = (exp‘(log‘6))
232 6pos 11104 . . . . . . . . . . . . 13 0 < 6
233226, 232elrpii 11820 . . . . . . . . . . . 12 6 ∈ ℝ+
234 reeflog 24308 . . . . . . . . . . . 12 (6 ∈ ℝ+ → (exp‘(log‘6)) = 6)
235233, 234ax-mp 5 . . . . . . . . . . 11 (exp‘(log‘6)) = 6
236231, 235eqtri 2642 . . . . . . . . . 10 (exp‘(θ‘3)) = 6
237 3re 11079 . . . . . . . . . . . . 13 3 ∈ ℝ
238237a1i 11 . . . . . . . . . . . 12 (𝜑 → 3 ∈ ℝ)
239 eluzle 11685 . . . . . . . . . . . . 13 (𝑀 ∈ (ℤ‘3) → 3 ≤ 𝑀)
24067, 239syl 17 . . . . . . . . . . . 12 (𝜑 → 3 ≤ 𝑀)
241 chtwordi 24863 . . . . . . . . . . . 12 ((3 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 3 ≤ 𝑀) → (θ‘3) ≤ (θ‘𝑀))
242238, 103, 240, 241syl3anc 1324 . . . . . . . . . . 11 (𝜑 → (θ‘3) ≤ (θ‘𝑀))
243 chtcl 24816 . . . . . . . . . . . . 13 (3 ∈ ℝ → (θ‘3) ∈ ℝ)
244237, 243ax-mp 5 . . . . . . . . . . . 12 (θ‘3) ∈ ℝ
245 chtcl 24816 . . . . . . . . . . . . 13 (𝑀 ∈ ℝ → (θ‘𝑀) ∈ ℝ)
246103, 245syl 17 . . . . . . . . . . . 12 (𝜑 → (θ‘𝑀) ∈ ℝ)
247 efle 14829 . . . . . . . . . . . 12 (((θ‘3) ∈ ℝ ∧ (θ‘𝑀) ∈ ℝ) → ((θ‘3) ≤ (θ‘𝑀) ↔ (exp‘(θ‘3)) ≤ (exp‘(θ‘𝑀))))
248244, 246, 247sylancr 694 . . . . . . . . . . 11 (𝜑 → ((θ‘3) ≤ (θ‘𝑀) ↔ (exp‘(θ‘3)) ≤ (exp‘(θ‘𝑀))))
249242, 248mpbid 222 . . . . . . . . . 10 (𝜑 → (exp‘(θ‘3)) ≤ (exp‘(θ‘𝑀)))
250236, 249syl5eqbrr 4680 . . . . . . . . 9 (𝜑 → 6 ≤ (exp‘(θ‘𝑀)))
251225, 227, 213, 229, 250ltletrd 10182 . . . . . . . 8 (𝜑 → 4 < (exp‘(θ‘𝑀)))
252 4pos 11101 . . . . . . . . . 10 0 < 4
253252a1i 11 . . . . . . . . 9 (𝜑 → 0 < 4)
254 ltdiv2 10894 . . . . . . . . 9 (((4 ∈ ℝ ∧ 0 < 4) ∧ ((exp‘(θ‘𝑀)) ∈ ℝ ∧ 0 < (exp‘(θ‘𝑀))) ∧ ((exp‘(θ‘𝐾)) ∈ ℝ ∧ 0 < (exp‘(θ‘𝐾)))) → (4 < (exp‘(θ‘𝑀)) ↔ ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))) < ((exp‘(θ‘𝐾)) / 4)))
255225, 253, 213, 215, 212, 214, 254syl222anc 1340 . . . . . . . 8 (𝜑 → (4 < (exp‘(θ‘𝑀)) ↔ ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))) < ((exp‘(θ‘𝐾)) / 4)))
256251, 255mpbid 222 . . . . . . 7 (𝜑 → ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))) < ((exp‘(θ‘𝐾)) / 4))
25726a1i 11 . . . . . . . . . . . . 13 (𝜑 → 2 ∈ ℝ)
258 2lt3 11180 . . . . . . . . . . . . . 14 2 < 3
259258a1i 11 . . . . . . . . . . . . 13 (𝜑 → 2 < 3)
260238, 103, 104, 240, 106letrd 10179 . . . . . . . . . . . . 13 (𝜑 → 3 ≤ 𝐾)
261257, 238, 104, 259, 260ltletrd 10182 . . . . . . . . . . . 12 (𝜑 → 2 < 𝐾)
262 chtub 24918 . . . . . . . . . . . 12 ((𝐾 ∈ ℝ ∧ 2 < 𝐾) → (θ‘𝐾) < ((log‘2) · ((2 · 𝐾) − 3)))
263104, 261, 262syl2anc 692 . . . . . . . . . . 11 (𝜑 → (θ‘𝐾) < ((log‘2) · ((2 · 𝐾) − 3)))
264 chtcl 24816 . . . . . . . . . . . . 13 (𝐾 ∈ ℝ → (θ‘𝐾) ∈ ℝ)
265104, 264syl 17 . . . . . . . . . . . 12 (𝜑 → (θ‘𝐾) ∈ ℝ)
266 relogcl 24303 . . . . . . . . . . . . . 14 (2 ∈ ℝ+ → (log‘2) ∈ ℝ)
26731, 266ax-mp 5 . . . . . . . . . . . . 13 (log‘2) ∈ ℝ
26823nnzi 11386 . . . . . . . . . . . . . . 15 3 ∈ ℤ
269 zsubcl 11404 . . . . . . . . . . . . . . 15 (((2 · 𝐾) ∈ ℤ ∧ 3 ∈ ℤ) → ((2 · 𝐾) − 3) ∈ ℤ)
27078, 268, 269sylancl 693 . . . . . . . . . . . . . 14 (𝜑 → ((2 · 𝐾) − 3) ∈ ℤ)
271270zred 11467 . . . . . . . . . . . . 13 (𝜑 → ((2 · 𝐾) − 3) ∈ ℝ)
272 remulcl 10006 . . . . . . . . . . . . 13 (((log‘2) ∈ ℝ ∧ ((2 · 𝐾) − 3) ∈ ℝ) → ((log‘2) · ((2 · 𝐾) − 3)) ∈ ℝ)
273267, 271, 272sylancr 694 . . . . . . . . . . . 12 (𝜑 → ((log‘2) · ((2 · 𝐾) − 3)) ∈ ℝ)
274 eflt 14828 . . . . . . . . . . . 12 (((θ‘𝐾) ∈ ℝ ∧ ((log‘2) · ((2 · 𝐾) − 3)) ∈ ℝ) → ((θ‘𝐾) < ((log‘2) · ((2 · 𝐾) − 3)) ↔ (exp‘(θ‘𝐾)) < (exp‘((log‘2) · ((2 · 𝐾) − 3)))))
275265, 273, 274syl2anc 692 . . . . . . . . . . 11 (𝜑 → ((θ‘𝐾) < ((log‘2) · ((2 · 𝐾) − 3)) ↔ (exp‘(θ‘𝐾)) < (exp‘((log‘2) · ((2 · 𝐾) − 3)))))
276263, 275mpbid 222 . . . . . . . . . 10 (𝜑 → (exp‘(θ‘𝐾)) < (exp‘((log‘2) · ((2 · 𝐾) − 3))))
277 reexplog 24322 . . . . . . . . . . . 12 ((2 ∈ ℝ+ ∧ ((2 · 𝐾) − 3) ∈ ℤ) → (2↑((2 · 𝐾) − 3)) = (exp‘(((2 · 𝐾) − 3) · (log‘2))))
27831, 270, 277sylancr 694 . . . . . . . . . . 11 (𝜑 → (2↑((2 · 𝐾) − 3)) = (exp‘(((2 · 𝐾) − 3) · (log‘2))))
279270zcnd 11468 . . . . . . . . . . . . 13 (𝜑 → ((2 · 𝐾) − 3) ∈ ℂ)
280267recni 10037 . . . . . . . . . . . . 13 (log‘2) ∈ ℂ
281 mulcom 10007 . . . . . . . . . . . . 13 ((((2 · 𝐾) − 3) ∈ ℂ ∧ (log‘2) ∈ ℂ) → (((2 · 𝐾) − 3) · (log‘2)) = ((log‘2) · ((2 · 𝐾) − 3)))
282279, 280, 281sylancl 693 . . . . . . . . . . . 12 (𝜑 → (((2 · 𝐾) − 3) · (log‘2)) = ((log‘2) · ((2 · 𝐾) − 3)))
283282fveq2d 6182 . . . . . . . . . . 11 (𝜑 → (exp‘(((2 · 𝐾) − 3) · (log‘2))) = (exp‘((log‘2) · ((2 · 𝐾) − 3))))
284278, 283eqtrd 2654 . . . . . . . . . 10 (𝜑 → (2↑((2 · 𝐾) − 3)) = (exp‘((log‘2) · ((2 · 𝐾) − 3))))
285276, 284breqtrrd 4672 . . . . . . . . 9 (𝜑 → (exp‘(θ‘𝐾)) < (2↑((2 · 𝐾) − 3)))
286 3p2e5 11145 . . . . . . . . . . . . . . . 16 (3 + 2) = 5
287286oveq1i 6645 . . . . . . . . . . . . . . 15 ((3 + 2) − 2) = (5 − 2)
288 3cn 11080 . . . . . . . . . . . . . . . 16 3 ∈ ℂ
289 2cn 11076 . . . . . . . . . . . . . . . 16 2 ∈ ℂ
290288, 289pncan3oi 10282 . . . . . . . . . . . . . . 15 ((3 + 2) − 2) = 3
291287, 290eqtr3i 2644 . . . . . . . . . . . . . 14 (5 − 2) = 3
292291oveq2i 6646 . . . . . . . . . . . . 13 ((2 · 𝐾) − (5 − 2)) = ((2 · 𝐾) − 3)
29378zcnd 11468 . . . . . . . . . . . . . 14 (𝜑 → (2 · 𝐾) ∈ ℂ)
294 5cn 11085 . . . . . . . . . . . . . . 15 5 ∈ ℂ
295 subsub 10296 . . . . . . . . . . . . . . 15 (((2 · 𝐾) ∈ ℂ ∧ 5 ∈ ℂ ∧ 2 ∈ ℂ) → ((2 · 𝐾) − (5 − 2)) = (((2 · 𝐾) − 5) + 2))
296294, 289, 295mp3an23 1414 . . . . . . . . . . . . . 14 ((2 · 𝐾) ∈ ℂ → ((2 · 𝐾) − (5 − 2)) = (((2 · 𝐾) − 5) + 2))
297293, 296syl 17 . . . . . . . . . . . . 13 (𝜑 → ((2 · 𝐾) − (5 − 2)) = (((2 · 𝐾) − 5) + 2))
298292, 297syl5eqr 2668 . . . . . . . . . . . 12 (𝜑 → ((2 · 𝐾) − 3) = (((2 · 𝐾) − 5) + 2))
299298oveq2d 6651 . . . . . . . . . . 11 (𝜑 → (2↑𝑐((2 · 𝐾) − 3)) = (2↑𝑐(((2 · 𝐾) − 5) + 2)))
300 2ne0 11098 . . . . . . . . . . . . 13 2 ≠ 0
301 cxpexpz 24394 . . . . . . . . . . . . 13 ((2 ∈ ℂ ∧ 2 ≠ 0 ∧ ((2 · 𝐾) − 3) ∈ ℤ) → (2↑𝑐((2 · 𝐾) − 3)) = (2↑((2 · 𝐾) − 3)))
302289, 300, 301mp3an12 1412 . . . . . . . . . . . 12 (((2 · 𝐾) − 3) ∈ ℤ → (2↑𝑐((2 · 𝐾) − 3)) = (2↑((2 · 𝐾) − 3)))
303270, 302syl 17 . . . . . . . . . . 11 (𝜑 → (2↑𝑐((2 · 𝐾) − 3)) = (2↑((2 · 𝐾) − 3)))
30481zcnd 11468 . . . . . . . . . . . 12 (𝜑 → ((2 · 𝐾) − 5) ∈ ℂ)
305 2cnne0 11227 . . . . . . . . . . . . 13 (2 ∈ ℂ ∧ 2 ≠ 0)
306 cxpadd 24406 . . . . . . . . . . . . 13 (((2 ∈ ℂ ∧ 2 ≠ 0) ∧ ((2 · 𝐾) − 5) ∈ ℂ ∧ 2 ∈ ℂ) → (2↑𝑐(((2 · 𝐾) − 5) + 2)) = ((2↑𝑐((2 · 𝐾) − 5)) · (2↑𝑐2)))
307305, 289, 306mp3an13 1413 . . . . . . . . . . . 12 (((2 · 𝐾) − 5) ∈ ℂ → (2↑𝑐(((2 · 𝐾) − 5) + 2)) = ((2↑𝑐((2 · 𝐾) − 5)) · (2↑𝑐2)))
308304, 307syl 17 . . . . . . . . . . 11 (𝜑 → (2↑𝑐(((2 · 𝐾) − 5) + 2)) = ((2↑𝑐((2 · 𝐾) − 5)) · (2↑𝑐2)))
309299, 303, 3083eqtr3d 2662 . . . . . . . . . 10 (𝜑 → (2↑((2 · 𝐾) − 3)) = ((2↑𝑐((2 · 𝐾) − 5)) · (2↑𝑐2)))
310 2nn0 11294 . . . . . . . . . . . . 13 2 ∈ ℕ0
311 cxpexp 24395 . . . . . . . . . . . . 13 ((2 ∈ ℂ ∧ 2 ∈ ℕ0) → (2↑𝑐2) = (2↑2))
312289, 310, 311mp2an 707 . . . . . . . . . . . 12 (2↑𝑐2) = (2↑2)
313 sq2 12943 . . . . . . . . . . . 12 (2↑2) = 4
314312, 313eqtri 2642 . . . . . . . . . . 11 (2↑𝑐2) = 4
315314oveq2i 6646 . . . . . . . . . 10 ((2↑𝑐((2 · 𝐾) − 5)) · (2↑𝑐2)) = ((2↑𝑐((2 · 𝐾) − 5)) · 4)
316309, 315syl6eq 2670 . . . . . . . . 9 (𝜑 → (2↑((2 · 𝐾) − 3)) = ((2↑𝑐((2 · 𝐾) − 5)) · 4))
317285, 316breqtrd 4670 . . . . . . . 8 (𝜑 → (exp‘(θ‘𝐾)) < ((2↑𝑐((2 · 𝐾) − 5)) · 4))
318224, 252pm3.2i 471 . . . . . . . . . 10 (4 ∈ ℝ ∧ 0 < 4)
319318a1i 11 . . . . . . . . 9 (𝜑 → (4 ∈ ℝ ∧ 0 < 4))
320 ltdivmul2 10885 . . . . . . . . 9 (((exp‘(θ‘𝐾)) ∈ ℝ ∧ (2↑𝑐((2 · 𝐾) − 5)) ∈ ℝ ∧ (4 ∈ ℝ ∧ 0 < 4)) → (((exp‘(θ‘𝐾)) / 4) < (2↑𝑐((2 · 𝐾) − 5)) ↔ (exp‘(θ‘𝐾)) < ((2↑𝑐((2 · 𝐾) − 5)) · 4)))
321212, 85, 319, 320syl3anc 1324 . . . . . . . 8 (𝜑 → (((exp‘(θ‘𝐾)) / 4) < (2↑𝑐((2 · 𝐾) − 5)) ↔ (exp‘(θ‘𝐾)) < ((2↑𝑐((2 · 𝐾) − 5)) · 4)))
322317, 321mpbird 247 . . . . . . 7 (𝜑 → ((exp‘(θ‘𝐾)) / 4) < (2↑𝑐((2 · 𝐾) − 5)))
323119, 223, 85, 256, 322lttrd 10183 . . . . . 6 (𝜑 → ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))) < (2↑𝑐((2 · 𝐾) − 5)))
324102, 119, 85, 221, 323lelttrd 10180 . . . . 5 (𝜑 → ((seq1( · , 𝐹)‘𝐾) / (seq1( · , 𝐹)‘𝑀)) < (2↑𝑐((2 · 𝐾) − 5)))
32597nnred 11020 . . . . . 6 (𝜑 → (seq1( · , 𝐹)‘𝐾) ∈ ℝ)
326 nnre 11012 . . . . . . . 8 ((seq1( · , 𝐹)‘𝑀) ∈ ℕ → (seq1( · , 𝐹)‘𝑀) ∈ ℝ)
327 nngt0 11034 . . . . . . . 8 ((seq1( · , 𝐹)‘𝑀) ∈ ℕ → 0 < (seq1( · , 𝐹)‘𝑀))
328326, 327jca 554 . . . . . . 7 ((seq1( · , 𝐹)‘𝑀) ∈ ℕ → ((seq1( · , 𝐹)‘𝑀) ∈ ℝ ∧ 0 < (seq1( · , 𝐹)‘𝑀)))
32970, 328syl 17 . . . . . 6 (𝜑 → ((seq1( · , 𝐹)‘𝑀) ∈ ℝ ∧ 0 < (seq1( · , 𝐹)‘𝑀)))
330 ltdivmul 10883 . . . . . 6 (((seq1( · , 𝐹)‘𝐾) ∈ ℝ ∧ (2↑𝑐((2 · 𝐾) − 5)) ∈ ℝ ∧ ((seq1( · , 𝐹)‘𝑀) ∈ ℝ ∧ 0 < (seq1( · , 𝐹)‘𝑀))) → (((seq1( · , 𝐹)‘𝐾) / (seq1( · , 𝐹)‘𝑀)) < (2↑𝑐((2 · 𝐾) − 5)) ↔ (seq1( · , 𝐹)‘𝐾) < ((seq1( · , 𝐹)‘𝑀) · (2↑𝑐((2 · 𝐾) − 5)))))
331325, 85, 329, 330syl3anc 1324 . . . . 5 (𝜑 → (((seq1( · , 𝐹)‘𝐾) / (seq1( · , 𝐹)‘𝑀)) < (2↑𝑐((2 · 𝐾) − 5)) ↔ (seq1( · , 𝐹)‘𝐾) < ((seq1( · , 𝐹)‘𝑀) · (2↑𝑐((2 · 𝐾) − 5)))))
332324, 331mpbid 222 . . . 4 (𝜑 → (seq1( · , 𝐹)‘𝐾) < ((seq1( · , 𝐹)‘𝑀) · (2↑𝑐((2 · 𝐾) − 5))))
33387, 332eqbrtrrd 4668 . . 3 (𝜑 → ((2 · 𝑁)C𝑁) < ((seq1( · , 𝐹)‘𝑀) · (2↑𝑐((2 · 𝐾) − 5))))
33430, 85remulcld 10055 . . . 4 (𝜑 → (((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)) · (2↑𝑐((2 · 𝐾) − 5))) ∈ ℝ)
3353, 62, 55, 63, 64bposlem5 24994 . . . . 5 (𝜑 → (seq1( · , 𝐹)‘𝑀) ≤ ((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)))
33671, 30, 84lemul1d 11900 . . . . 5 (𝜑 → ((seq1( · , 𝐹)‘𝑀) ≤ ((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)) ↔ ((seq1( · , 𝐹)‘𝑀) · (2↑𝑐((2 · 𝐾) − 5))) ≤ (((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)) · (2↑𝑐((2 · 𝐾) − 5)))))
337335, 336mpbid 222 . . . 4 (𝜑 → ((seq1( · , 𝐹)‘𝑀) · (2↑𝑐((2 · 𝐾) − 5))) ≤ (((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)) · (2↑𝑐((2 · 𝐾) − 5))))
33878zred 11467 . . . . . . 7 (𝜑 → (2 · 𝐾) ∈ ℝ)
33937a1i 11 . . . . . . 7 (𝜑 → 5 ∈ ℝ)
340 flle 12583 . . . . . . . . . . 11 (((2 · 𝑁) / 3) ∈ ℝ → (⌊‘((2 · 𝑁) / 3)) ≤ ((2 · 𝑁) / 3))
34174, 340syl 17 . . . . . . . . . 10 (𝜑 → (⌊‘((2 · 𝑁) / 3)) ≤ ((2 · 𝑁) / 3))
34263, 341syl5eqbr 4679 . . . . . . . . 9 (𝜑𝐾 ≤ ((2 · 𝑁) / 3))
343 2pos 11097 . . . . . . . . . . . 12 0 < 2
34426, 343pm3.2i 471 . . . . . . . . . . 11 (2 ∈ ℝ ∧ 0 < 2)
345344a1i 11 . . . . . . . . . 10 (𝜑 → (2 ∈ ℝ ∧ 0 < 2))
346 lemul2 10861 . . . . . . . . . 10 ((𝐾 ∈ ℝ ∧ ((2 · 𝑁) / 3) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (𝐾 ≤ ((2 · 𝑁) / 3) ↔ (2 · 𝐾) ≤ (2 · ((2 · 𝑁) / 3))))
347104, 74, 345, 346syl3anc 1324 . . . . . . . . 9 (𝜑 → (𝐾 ≤ ((2 · 𝑁) / 3) ↔ (2 · 𝐾) ≤ (2 · ((2 · 𝑁) / 3))))
348342, 347mpbid 222 . . . . . . . 8 (𝜑 → (2 · 𝐾) ≤ (2 · ((2 · 𝑁) / 3)))
34918nncnd 11021 . . . . . . . . . 10 (𝜑 → (2 · 𝑁) ∈ ℂ)
350 3ne0 11100 . . . . . . . . . . . 12 3 ≠ 0
351288, 350pm3.2i 471 . . . . . . . . . . 11 (3 ∈ ℂ ∧ 3 ≠ 0)
352 divass 10688 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ (2 · 𝑁) ∈ ℂ ∧ (3 ∈ ℂ ∧ 3 ≠ 0)) → ((2 · (2 · 𝑁)) / 3) = (2 · ((2 · 𝑁) / 3)))
353289, 351, 352mp3an13 1413 . . . . . . . . . 10 ((2 · 𝑁) ∈ ℂ → ((2 · (2 · 𝑁)) / 3) = (2 · ((2 · 𝑁) / 3)))
354349, 353syl 17 . . . . . . . . 9 (𝜑 → ((2 · (2 · 𝑁)) / 3) = (2 · ((2 · 𝑁) / 3)))
355 2t2e4 11162 . . . . . . . . . . . 12 (2 · 2) = 4
356355oveq1i 6645 . . . . . . . . . . 11 ((2 · 2) · 𝑁) = (4 · 𝑁)
3575nncnd 11021 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℂ)
358 mulass 10009 . . . . . . . . . . . . 13 ((2 ∈ ℂ ∧ 2 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((2 · 2) · 𝑁) = (2 · (2 · 𝑁)))
359289, 289, 358mp3an12 1412 . . . . . . . . . . . 12 (𝑁 ∈ ℂ → ((2 · 2) · 𝑁) = (2 · (2 · 𝑁)))
360357, 359syl 17 . . . . . . . . . . 11 (𝜑 → ((2 · 2) · 𝑁) = (2 · (2 · 𝑁)))
361356, 360syl5reqr 2669 . . . . . . . . . 10 (𝜑 → (2 · (2 · 𝑁)) = (4 · 𝑁))
362361oveq1d 6650 . . . . . . . . 9 (𝜑 → ((2 · (2 · 𝑁)) / 3) = ((4 · 𝑁) / 3))
363354, 362eqtr3d 2656 . . . . . . . 8 (𝜑 → (2 · ((2 · 𝑁) / 3)) = ((4 · 𝑁) / 3))
364348, 363breqtrd 4670 . . . . . . 7 (𝜑 → (2 · 𝐾) ≤ ((4 · 𝑁) / 3))
365338, 36, 339, 364lesub1dd 10628 . . . . . 6 (𝜑 → ((2 · 𝐾) − 5) ≤ (((4 · 𝑁) / 3) − 5))
366 1lt2 11179 . . . . . . . 8 1 < 2
367366a1i 11 . . . . . . 7 (𝜑 → 1 < 2)
368257, 367, 82, 39cxpled 24447 . . . . . 6 (𝜑 → (((2 · 𝐾) − 5) ≤ (((4 · 𝑁) / 3) − 5) ↔ (2↑𝑐((2 · 𝐾) − 5)) ≤ (2↑𝑐(((4 · 𝑁) / 3) − 5))))
369365, 368mpbid 222 . . . . 5 (𝜑 → (2↑𝑐((2 · 𝐾) − 5)) ≤ (2↑𝑐(((4 · 𝑁) / 3) − 5)))
37085, 42, 29lemul2d 11901 . . . . 5 (𝜑 → ((2↑𝑐((2 · 𝐾) − 5)) ≤ (2↑𝑐(((4 · 𝑁) / 3) − 5)) ↔ (((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)) · (2↑𝑐((2 · 𝐾) − 5))) ≤ (((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)) · (2↑𝑐(((4 · 𝑁) / 3) − 5)))))
371369, 370mpbid 222 . . . 4 (𝜑 → (((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)) · (2↑𝑐((2 · 𝐾) − 5))) ≤ (((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)) · (2↑𝑐(((4 · 𝑁) / 3) − 5))))
37286, 334, 43, 337, 371letrd 10179 . . 3 (𝜑 → ((seq1( · , 𝐹)‘𝑀) · (2↑𝑐((2 · 𝐾) − 5))) ≤ (((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)) · (2↑𝑐(((4 · 𝑁) / 3) − 5))))
37315, 86, 43, 333, 372ltletrd 10182 . 2 (𝜑 → ((2 · 𝑁)C𝑁) < (((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)) · (2↑𝑐(((4 · 𝑁) / 3) − 5))))
37410, 15, 43, 54, 373lttrd 10183 1 (𝜑 → ((4↑𝑁) / 𝑁) < (((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)) · (2↑𝑐(((4 · 𝑁) / 3) − 5))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1481  wcel 1988  wne 2791  wral 2909  wrex 2910  ifcif 4077   class class class wbr 4644  cmpt 4720  wf 5872  cfv 5876  (class class class)co 6635  cc 9919  cr 9920  0cc0 9921  1c1 9922   + caddc 9924   · cmul 9926   < clt 10059  cle 10060  cmin 10251   / cdiv 10669  cn 11005  2c2 11055  3c3 11056  4c4 11057  5c5 11058  6c6 11059  0cn0 11277  cz 11362  cuz 11672  +crp 11817  ...cfz 12311  cfl 12574  seqcseq 12784  cexp 12843  Ccbc 13072  csqrt 13954  expce 14773  cdvds 14964  cprime 15366   pCnt cpc 15522  logclog 24282  𝑐ccxp 24283  θccht 24798
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-inf2 8523  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998  ax-pre-sup 9999  ax-addf 10000  ax-mulf 10001
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-fal 1487  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-iin 4514  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-se 5064  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-isom 5885  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-of 6882  df-om 7051  df-1st 7153  df-2nd 7154  df-supp 7281  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-1o 7545  df-2o 7546  df-oadd 7549  df-er 7727  df-map 7844  df-pm 7845  df-ixp 7894  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944  df-fsupp 8261  df-fi 8302  df-sup 8333  df-inf 8334  df-oi 8400  df-card 8750  df-cda 8975  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-div 10670  df-nn 11006  df-2 11064  df-3 11065  df-4 11066  df-5 11067  df-6 11068  df-7 11069  df-8 11070  df-9 11071  df-n0 11278  df-xnn0 11349  df-z 11363  df-dec 11479  df-uz 11673  df-q 11774  df-rp 11818  df-xneg 11931  df-xadd 11932  df-xmul 11933  df-ioo 12164  df-ioc 12165  df-ico 12166  df-icc 12167  df-fz 12312  df-fzo 12450  df-fl 12576  df-mod 12652  df-seq 12785  df-exp 12844  df-fac 13044  df-bc 13073  df-hash 13101  df-shft 13788  df-cj 13820  df-re 13821  df-im 13822  df-sqrt 13956  df-abs 13957  df-limsup 14183  df-clim 14200  df-rlim 14201  df-sum 14398  df-ef 14779  df-sin 14781  df-cos 14782  df-pi 14784  df-dvds 14965  df-gcd 15198  df-prm 15367  df-pc 15523  df-struct 15840  df-ndx 15841  df-slot 15842  df-base 15844  df-sets 15845  df-ress 15846  df-plusg 15935  df-mulr 15936  df-starv 15937  df-sca 15938  df-vsca 15939  df-ip 15940  df-tset 15941  df-ple 15942  df-ds 15945  df-unif 15946  df-hom 15947  df-cco 15948  df-rest 16064  df-topn 16065  df-0g 16083  df-gsum 16084  df-topgen 16085  df-pt 16086  df-prds 16089  df-xrs 16143  df-qtop 16148  df-imas 16149  df-xps 16151  df-mre 16227  df-mrc 16228  df-acs 16230  df-mgm 17223  df-sgrp 17265  df-mnd 17276  df-submnd 17317  df-mulg 17522  df-cntz 17731  df-cmn 18176  df-psmet 19719  df-xmet 19720  df-met 19721  df-bl 19722  df-mopn 19723  df-fbas 19724  df-fg 19725  df-cnfld 19728  df-top 20680  df-topon 20697  df-topsp 20718  df-bases 20731  df-cld 20804  df-ntr 20805  df-cls 20806  df-nei 20883  df-lp 20921  df-perf 20922  df-cn 21012  df-cnp 21013  df-haus 21100  df-tx 21346  df-hmeo 21539  df-fil 21631  df-fm 21723  df-flim 21724  df-flf 21725  df-xms 22106  df-ms 22107  df-tms 22108  df-cncf 22662  df-limc 23611  df-dv 23612  df-log 24284  df-cxp 24285  df-cht 24804  df-ppi 24807
This theorem is referenced by:  bposlem9  24998
  Copyright terms: Public domain W3C validator