Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  bposlem3 Structured version   Visualization version   GIF version

Theorem bposlem3 25056
 Description: Lemma for bpos 25063. Since the binomial coefficient does not have any primes in the range (2𝑁 / 3, 𝑁] or (2𝑁, +∞) by bposlem2 25055 and prmfac1 15478, respectively, and it does not have any in the range (𝑁, 2𝑁] by hypothesis, the product of the primes up through 2𝑁 / 3 must be sufficient to compose the whole binomial coefficient. (Contributed by Mario Carneiro, 13-Mar-2014.)
Hypotheses
Ref Expression
bpos.1 (𝜑𝑁 ∈ (ℤ‘5))
bpos.2 (𝜑 → ¬ ∃𝑝 ∈ ℙ (𝑁 < 𝑝𝑝 ≤ (2 · 𝑁)))
bpos.3 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt ((2 · 𝑁)C𝑁))), 1))
bpos.4 𝐾 = (⌊‘((2 · 𝑁) / 3))
Assertion
Ref Expression
bposlem3 (𝜑 → (seq1( · , 𝐹)‘𝐾) = ((2 · 𝑁)C𝑁))
Distinct variable groups:   𝐹,𝑝   𝑛,𝑝,𝐾   𝑛,𝑁,𝑝   𝜑,𝑛,𝑝
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem bposlem3
StepHypRef Expression
1 bpos.3 . . . . 5 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt ((2 · 𝑁)C𝑁))), 1))
2 simpr 476 . . . . . . . 8 ((𝜑𝑛 ∈ ℙ) → 𝑛 ∈ ℙ)
3 5nn 11226 . . . . . . . . . . . 12 5 ∈ ℕ
4 bpos.1 . . . . . . . . . . . 12 (𝜑𝑁 ∈ (ℤ‘5))
5 eluznn 11796 . . . . . . . . . . . 12 ((5 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘5)) → 𝑁 ∈ ℕ)
63, 4, 5sylancr 696 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ)
76nnnn0d 11389 . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ0)
8 fzctr 12490 . . . . . . . . . 10 (𝑁 ∈ ℕ0𝑁 ∈ (0...(2 · 𝑁)))
9 bccl2 13150 . . . . . . . . . 10 (𝑁 ∈ (0...(2 · 𝑁)) → ((2 · 𝑁)C𝑁) ∈ ℕ)
107, 8, 93syl 18 . . . . . . . . 9 (𝜑 → ((2 · 𝑁)C𝑁) ∈ ℕ)
1110adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ ℙ) → ((2 · 𝑁)C𝑁) ∈ ℕ)
122, 11pccld 15602 . . . . . . 7 ((𝜑𝑛 ∈ ℙ) → (𝑛 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ0)
1312ralrimiva 2995 . . . . . 6 (𝜑 → ∀𝑛 ∈ ℙ (𝑛 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ0)
1413adantr 480 . . . . 5 ((𝜑𝑝 ∈ ℙ) → ∀𝑛 ∈ ℙ (𝑛 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ0)
15 bpos.4 . . . . . . . . 9 𝐾 = (⌊‘((2 · 𝑁) / 3))
16 2nn 11223 . . . . . . . . . . . . 13 2 ∈ ℕ
17 nnmulcl 11081 . . . . . . . . . . . . 13 ((2 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2 · 𝑁) ∈ ℕ)
1816, 6, 17sylancr 696 . . . . . . . . . . . 12 (𝜑 → (2 · 𝑁) ∈ ℕ)
1918nnred 11073 . . . . . . . . . . 11 (𝜑 → (2 · 𝑁) ∈ ℝ)
20 3nn 11224 . . . . . . . . . . 11 3 ∈ ℕ
21 nndivre 11094 . . . . . . . . . . 11 (((2 · 𝑁) ∈ ℝ ∧ 3 ∈ ℕ) → ((2 · 𝑁) / 3) ∈ ℝ)
2219, 20, 21sylancl 695 . . . . . . . . . 10 (𝜑 → ((2 · 𝑁) / 3) ∈ ℝ)
2322flcld 12639 . . . . . . . . 9 (𝜑 → (⌊‘((2 · 𝑁) / 3)) ∈ ℤ)
2415, 23syl5eqel 2734 . . . . . . . 8 (𝜑𝐾 ∈ ℤ)
25 3re 11132 . . . . . . . . . . . . . 14 3 ∈ ℝ
2625a1i 11 . . . . . . . . . . . . 13 (𝜑 → 3 ∈ ℝ)
27 5re 11137 . . . . . . . . . . . . . 14 5 ∈ ℝ
2827a1i 11 . . . . . . . . . . . . 13 (𝜑 → 5 ∈ ℝ)
296nnred 11073 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℝ)
30 3lt5 11239 . . . . . . . . . . . . . . 15 3 < 5
3125, 27, 30ltleii 10198 . . . . . . . . . . . . . 14 3 ≤ 5
3231a1i 11 . . . . . . . . . . . . 13 (𝜑 → 3 ≤ 5)
33 eluzle 11738 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘5) → 5 ≤ 𝑁)
344, 33syl 17 . . . . . . . . . . . . 13 (𝜑 → 5 ≤ 𝑁)
3526, 28, 29, 32, 34letrd 10232 . . . . . . . . . . . 12 (𝜑 → 3 ≤ 𝑁)
36 2re 11128 . . . . . . . . . . . . . . 15 2 ∈ ℝ
37 2pos 11150 . . . . . . . . . . . . . . 15 0 < 2
3836, 37pm3.2i 470 . . . . . . . . . . . . . 14 (2 ∈ ℝ ∧ 0 < 2)
39 lemul2 10914 . . . . . . . . . . . . . 14 ((3 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (3 ≤ 𝑁 ↔ (2 · 3) ≤ (2 · 𝑁)))
4025, 38, 39mp3an13 1455 . . . . . . . . . . . . 13 (𝑁 ∈ ℝ → (3 ≤ 𝑁 ↔ (2 · 3) ≤ (2 · 𝑁)))
4129, 40syl 17 . . . . . . . . . . . 12 (𝜑 → (3 ≤ 𝑁 ↔ (2 · 3) ≤ (2 · 𝑁)))
4235, 41mpbid 222 . . . . . . . . . . 11 (𝜑 → (2 · 3) ≤ (2 · 𝑁))
43 3pos 11152 . . . . . . . . . . . . . 14 0 < 3
4425, 43pm3.2i 470 . . . . . . . . . . . . 13 (3 ∈ ℝ ∧ 0 < 3)
45 lemuldiv 10941 . . . . . . . . . . . . 13 ((2 ∈ ℝ ∧ (2 · 𝑁) ∈ ℝ ∧ (3 ∈ ℝ ∧ 0 < 3)) → ((2 · 3) ≤ (2 · 𝑁) ↔ 2 ≤ ((2 · 𝑁) / 3)))
4636, 44, 45mp3an13 1455 . . . . . . . . . . . 12 ((2 · 𝑁) ∈ ℝ → ((2 · 3) ≤ (2 · 𝑁) ↔ 2 ≤ ((2 · 𝑁) / 3)))
4719, 46syl 17 . . . . . . . . . . 11 (𝜑 → ((2 · 3) ≤ (2 · 𝑁) ↔ 2 ≤ ((2 · 𝑁) / 3)))
4842, 47mpbid 222 . . . . . . . . . 10 (𝜑 → 2 ≤ ((2 · 𝑁) / 3))
49 2z 11447 . . . . . . . . . . 11 2 ∈ ℤ
50 flge 12646 . . . . . . . . . . 11 ((((2 · 𝑁) / 3) ∈ ℝ ∧ 2 ∈ ℤ) → (2 ≤ ((2 · 𝑁) / 3) ↔ 2 ≤ (⌊‘((2 · 𝑁) / 3))))
5122, 49, 50sylancl 695 . . . . . . . . . 10 (𝜑 → (2 ≤ ((2 · 𝑁) / 3) ↔ 2 ≤ (⌊‘((2 · 𝑁) / 3))))
5248, 51mpbid 222 . . . . . . . . 9 (𝜑 → 2 ≤ (⌊‘((2 · 𝑁) / 3)))
5352, 15syl6breqr 4727 . . . . . . . 8 (𝜑 → 2 ≤ 𝐾)
5449eluz1i 11733 . . . . . . . 8 (𝐾 ∈ (ℤ‘2) ↔ (𝐾 ∈ ℤ ∧ 2 ≤ 𝐾))
5524, 53, 54sylanbrc 699 . . . . . . 7 (𝜑𝐾 ∈ (ℤ‘2))
56 eluz2nn 11764 . . . . . . 7 (𝐾 ∈ (ℤ‘2) → 𝐾 ∈ ℕ)
5755, 56syl 17 . . . . . 6 (𝜑𝐾 ∈ ℕ)
5857adantr 480 . . . . 5 ((𝜑𝑝 ∈ ℙ) → 𝐾 ∈ ℕ)
59 simpr 476 . . . . 5 ((𝜑𝑝 ∈ ℙ) → 𝑝 ∈ ℙ)
60 oveq1 6697 . . . . 5 (𝑛 = 𝑝 → (𝑛 pCnt ((2 · 𝑁)C𝑁)) = (𝑝 pCnt ((2 · 𝑁)C𝑁)))
611, 14, 58, 59, 60pcmpt 15643 . . . 4 ((𝜑𝑝 ∈ ℙ) → (𝑝 pCnt (seq1( · , 𝐹)‘𝐾)) = if(𝑝𝐾, (𝑝 pCnt ((2 · 𝑁)C𝑁)), 0))
62 iftrue 4125 . . . . . 6 (𝑝𝐾 → if(𝑝𝐾, (𝑝 pCnt ((2 · 𝑁)C𝑁)), 0) = (𝑝 pCnt ((2 · 𝑁)C𝑁)))
6362adantl 481 . . . . 5 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝𝐾) → if(𝑝𝐾, (𝑝 pCnt ((2 · 𝑁)C𝑁)), 0) = (𝑝 pCnt ((2 · 𝑁)C𝑁)))
64 iffalse 4128 . . . . . . 7 𝑝𝐾 → if(𝑝𝐾, (𝑝 pCnt ((2 · 𝑁)C𝑁)), 0) = 0)
6564adantl 481 . . . . . 6 (((𝜑𝑝 ∈ ℙ) ∧ ¬ 𝑝𝐾) → if(𝑝𝐾, (𝑝 pCnt ((2 · 𝑁)C𝑁)), 0) = 0)
6624zred 11520 . . . . . . . . 9 (𝜑𝐾 ∈ ℝ)
67 prmz 15436 . . . . . . . . . 10 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
6867zred 11520 . . . . . . . . 9 (𝑝 ∈ ℙ → 𝑝 ∈ ℝ)
69 ltnle 10155 . . . . . . . . 9 ((𝐾 ∈ ℝ ∧ 𝑝 ∈ ℝ) → (𝐾 < 𝑝 ↔ ¬ 𝑝𝐾))
7066, 68, 69syl2an 493 . . . . . . . 8 ((𝜑𝑝 ∈ ℙ) → (𝐾 < 𝑝 ↔ ¬ 𝑝𝐾))
7170biimpar 501 . . . . . . 7 (((𝜑𝑝 ∈ ℙ) ∧ ¬ 𝑝𝐾) → 𝐾 < 𝑝)
726ad2antrr 762 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ (𝐾 < 𝑝𝑝𝑁)) → 𝑁 ∈ ℕ)
73 simplr 807 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ (𝐾 < 𝑝𝑝𝑁)) → 𝑝 ∈ ℙ)
7436a1i 11 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ (𝐾 < 𝑝𝑝𝑁)) → 2 ∈ ℝ)
7566ad2antrr 762 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ (𝐾 < 𝑝𝑝𝑁)) → 𝐾 ∈ ℝ)
7667ad2antlr 763 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℙ) ∧ (𝐾 < 𝑝𝑝𝑁)) → 𝑝 ∈ ℤ)
7776zred 11520 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ (𝐾 < 𝑝𝑝𝑁)) → 𝑝 ∈ ℝ)
7853ad2antrr 762 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ (𝐾 < 𝑝𝑝𝑁)) → 2 ≤ 𝐾)
79 simprl 809 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ (𝐾 < 𝑝𝑝𝑁)) → 𝐾 < 𝑝)
8074, 75, 77, 78, 79lelttrd 10233 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ (𝐾 < 𝑝𝑝𝑁)) → 2 < 𝑝)
8115, 79syl5eqbrr 4721 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ (𝐾 < 𝑝𝑝𝑁)) → (⌊‘((2 · 𝑁) / 3)) < 𝑝)
8222ad2antrr 762 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℙ) ∧ (𝐾 < 𝑝𝑝𝑁)) → ((2 · 𝑁) / 3) ∈ ℝ)
83 fllt 12647 . . . . . . . . . . . 12 ((((2 · 𝑁) / 3) ∈ ℝ ∧ 𝑝 ∈ ℤ) → (((2 · 𝑁) / 3) < 𝑝 ↔ (⌊‘((2 · 𝑁) / 3)) < 𝑝))
8482, 76, 83syl2anc 694 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ (𝐾 < 𝑝𝑝𝑁)) → (((2 · 𝑁) / 3) < 𝑝 ↔ (⌊‘((2 · 𝑁) / 3)) < 𝑝))
8581, 84mpbird 247 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ (𝐾 < 𝑝𝑝𝑁)) → ((2 · 𝑁) / 3) < 𝑝)
86 simprr 811 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ (𝐾 < 𝑝𝑝𝑁)) → 𝑝𝑁)
8772, 73, 80, 85, 86bposlem2 25055 . . . . . . . . 9 (((𝜑𝑝 ∈ ℙ) ∧ (𝐾 < 𝑝𝑝𝑁)) → (𝑝 pCnt ((2 · 𝑁)C𝑁)) = 0)
8887expr 642 . . . . . . . 8 (((𝜑𝑝 ∈ ℙ) ∧ 𝐾 < 𝑝) → (𝑝𝑁 → (𝑝 pCnt ((2 · 𝑁)C𝑁)) = 0))
89 rspe 3032 . . . . . . . . . . . . . 14 ((𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝 ≤ (2 · 𝑁))) → ∃𝑝 ∈ ℙ (𝑁 < 𝑝𝑝 ≤ (2 · 𝑁)))
9089adantll 750 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ ℙ) ∧ (𝑁 < 𝑝𝑝 ≤ (2 · 𝑁))) → ∃𝑝 ∈ ℙ (𝑁 < 𝑝𝑝 ≤ (2 · 𝑁)))
91 bpos.2 . . . . . . . . . . . . . 14 (𝜑 → ¬ ∃𝑝 ∈ ℙ (𝑁 < 𝑝𝑝 ≤ (2 · 𝑁)))
9291ad2antrr 762 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ ℙ) ∧ (𝑁 < 𝑝𝑝 ≤ (2 · 𝑁))) → ¬ ∃𝑝 ∈ ℙ (𝑁 < 𝑝𝑝 ≤ (2 · 𝑁)))
9390, 92pm2.21dd 186 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℙ) ∧ (𝑁 < 𝑝𝑝 ≤ (2 · 𝑁))) → (𝑝 pCnt ((2 · 𝑁)C𝑁)) = 0)
9493expr 642 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ 𝑁 < 𝑝) → (𝑝 ≤ (2 · 𝑁) → (𝑝 pCnt ((2 · 𝑁)C𝑁)) = 0))
9510nnzd 11519 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((2 · 𝑁)C𝑁) ∈ ℤ)
96 faccl 13110 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ)
977, 96syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (!‘𝑁) ∈ ℕ)
9897, 97nnmulcld 11106 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((!‘𝑁) · (!‘𝑁)) ∈ ℕ)
9998nnzd 11519 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((!‘𝑁) · (!‘𝑁)) ∈ ℤ)
100 dvdsmul1 15050 . . . . . . . . . . . . . . . . . . 19 ((((2 · 𝑁)C𝑁) ∈ ℤ ∧ ((!‘𝑁) · (!‘𝑁)) ∈ ℤ) → ((2 · 𝑁)C𝑁) ∥ (((2 · 𝑁)C𝑁) · ((!‘𝑁) · (!‘𝑁))))
10195, 99, 100syl2anc 694 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((2 · 𝑁)C𝑁) ∥ (((2 · 𝑁)C𝑁) · ((!‘𝑁) · (!‘𝑁))))
102 bcctr 25045 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0 → ((2 · 𝑁)C𝑁) = ((!‘(2 · 𝑁)) / ((!‘𝑁) · (!‘𝑁))))
1037, 102syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((2 · 𝑁)C𝑁) = ((!‘(2 · 𝑁)) / ((!‘𝑁) · (!‘𝑁))))
104103oveq1d 6705 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (((2 · 𝑁)C𝑁) · ((!‘𝑁) · (!‘𝑁))) = (((!‘(2 · 𝑁)) / ((!‘𝑁) · (!‘𝑁))) · ((!‘𝑁) · (!‘𝑁))))
10518nnnn0d 11389 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (2 · 𝑁) ∈ ℕ0)
106 faccl 13110 . . . . . . . . . . . . . . . . . . . . . 22 ((2 · 𝑁) ∈ ℕ0 → (!‘(2 · 𝑁)) ∈ ℕ)
107105, 106syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (!‘(2 · 𝑁)) ∈ ℕ)
108107nncnd 11074 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (!‘(2 · 𝑁)) ∈ ℂ)
10998nncnd 11074 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((!‘𝑁) · (!‘𝑁)) ∈ ℂ)
11098nnne0d 11103 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((!‘𝑁) · (!‘𝑁)) ≠ 0)
111108, 109, 110divcan1d 10840 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (((!‘(2 · 𝑁)) / ((!‘𝑁) · (!‘𝑁))) · ((!‘𝑁) · (!‘𝑁))) = (!‘(2 · 𝑁)))
112104, 111eqtrd 2685 . . . . . . . . . . . . . . . . . 18 (𝜑 → (((2 · 𝑁)C𝑁) · ((!‘𝑁) · (!‘𝑁))) = (!‘(2 · 𝑁)))
113101, 112breqtrd 4711 . . . . . . . . . . . . . . . . 17 (𝜑 → ((2 · 𝑁)C𝑁) ∥ (!‘(2 · 𝑁)))
114113adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ ℙ) → ((2 · 𝑁)C𝑁) ∥ (!‘(2 · 𝑁)))
11567adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ ℙ) → 𝑝 ∈ ℤ)
11695adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ ℙ) → ((2 · 𝑁)C𝑁) ∈ ℤ)
117107nnzd 11519 . . . . . . . . . . . . . . . . . 18 (𝜑 → (!‘(2 · 𝑁)) ∈ ℤ)
118117adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ ℙ) → (!‘(2 · 𝑁)) ∈ ℤ)
119 dvdstr 15065 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ ℤ ∧ ((2 · 𝑁)C𝑁) ∈ ℤ ∧ (!‘(2 · 𝑁)) ∈ ℤ) → ((𝑝 ∥ ((2 · 𝑁)C𝑁) ∧ ((2 · 𝑁)C𝑁) ∥ (!‘(2 · 𝑁))) → 𝑝 ∥ (!‘(2 · 𝑁))))
120115, 116, 118, 119syl3anc 1366 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ ℙ) → ((𝑝 ∥ ((2 · 𝑁)C𝑁) ∧ ((2 · 𝑁)C𝑁) ∥ (!‘(2 · 𝑁))) → 𝑝 ∥ (!‘(2 · 𝑁))))
121114, 120mpan2d 710 . . . . . . . . . . . . . . 15 ((𝜑𝑝 ∈ ℙ) → (𝑝 ∥ ((2 · 𝑁)C𝑁) → 𝑝 ∥ (!‘(2 · 𝑁))))
122 prmfac1 15478 . . . . . . . . . . . . . . . . 17 (((2 · 𝑁) ∈ ℕ0𝑝 ∈ ℙ ∧ 𝑝 ∥ (!‘(2 · 𝑁))) → 𝑝 ≤ (2 · 𝑁))
1231223expia 1286 . . . . . . . . . . . . . . . 16 (((2 · 𝑁) ∈ ℕ0𝑝 ∈ ℙ) → (𝑝 ∥ (!‘(2 · 𝑁)) → 𝑝 ≤ (2 · 𝑁)))
124105, 123sylan 487 . . . . . . . . . . . . . . 15 ((𝜑𝑝 ∈ ℙ) → (𝑝 ∥ (!‘(2 · 𝑁)) → 𝑝 ≤ (2 · 𝑁)))
125121, 124syld 47 . . . . . . . . . . . . . 14 ((𝜑𝑝 ∈ ℙ) → (𝑝 ∥ ((2 · 𝑁)C𝑁) → 𝑝 ≤ (2 · 𝑁)))
126125con3d 148 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ ℙ) → (¬ 𝑝 ≤ (2 · 𝑁) → ¬ 𝑝 ∥ ((2 · 𝑁)C𝑁)))
127 id 22 . . . . . . . . . . . . . 14 (𝑝 ∈ ℙ → 𝑝 ∈ ℙ)
128 pceq0 15622 . . . . . . . . . . . . . 14 ((𝑝 ∈ ℙ ∧ ((2 · 𝑁)C𝑁) ∈ ℕ) → ((𝑝 pCnt ((2 · 𝑁)C𝑁)) = 0 ↔ ¬ 𝑝 ∥ ((2 · 𝑁)C𝑁)))
129127, 10, 128syl2anr 494 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ ℙ) → ((𝑝 pCnt ((2 · 𝑁)C𝑁)) = 0 ↔ ¬ 𝑝 ∥ ((2 · 𝑁)C𝑁)))
130126, 129sylibrd 249 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ ℙ) → (¬ 𝑝 ≤ (2 · 𝑁) → (𝑝 pCnt ((2 · 𝑁)C𝑁)) = 0))
131130adantr 480 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ 𝑁 < 𝑝) → (¬ 𝑝 ≤ (2 · 𝑁) → (𝑝 pCnt ((2 · 𝑁)C𝑁)) = 0))
13294, 131pm2.61d 170 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ 𝑁 < 𝑝) → (𝑝 pCnt ((2 · 𝑁)C𝑁)) = 0)
133132ex 449 . . . . . . . . 9 ((𝜑𝑝 ∈ ℙ) → (𝑁 < 𝑝 → (𝑝 pCnt ((2 · 𝑁)C𝑁)) = 0))
134133adantr 480 . . . . . . . 8 (((𝜑𝑝 ∈ ℙ) ∧ 𝐾 < 𝑝) → (𝑁 < 𝑝 → (𝑝 pCnt ((2 · 𝑁)C𝑁)) = 0))
135 lelttric 10182 . . . . . . . . . 10 ((𝑝 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑝𝑁𝑁 < 𝑝))
13668, 29, 135syl2anr 494 . . . . . . . . 9 ((𝜑𝑝 ∈ ℙ) → (𝑝𝑁𝑁 < 𝑝))
137136adantr 480 . . . . . . . 8 (((𝜑𝑝 ∈ ℙ) ∧ 𝐾 < 𝑝) → (𝑝𝑁𝑁 < 𝑝))
13888, 134, 137mpjaod 395 . . . . . . 7 (((𝜑𝑝 ∈ ℙ) ∧ 𝐾 < 𝑝) → (𝑝 pCnt ((2 · 𝑁)C𝑁)) = 0)
13971, 138syldan 486 . . . . . 6 (((𝜑𝑝 ∈ ℙ) ∧ ¬ 𝑝𝐾) → (𝑝 pCnt ((2 · 𝑁)C𝑁)) = 0)
14065, 139eqtr4d 2688 . . . . 5 (((𝜑𝑝 ∈ ℙ) ∧ ¬ 𝑝𝐾) → if(𝑝𝐾, (𝑝 pCnt ((2 · 𝑁)C𝑁)), 0) = (𝑝 pCnt ((2 · 𝑁)C𝑁)))
14163, 140pm2.61dan 849 . . . 4 ((𝜑𝑝 ∈ ℙ) → if(𝑝𝐾, (𝑝 pCnt ((2 · 𝑁)C𝑁)), 0) = (𝑝 pCnt ((2 · 𝑁)C𝑁)))
14261, 141eqtrd 2685 . . 3 ((𝜑𝑝 ∈ ℙ) → (𝑝 pCnt (seq1( · , 𝐹)‘𝐾)) = (𝑝 pCnt ((2 · 𝑁)C𝑁)))
143142ralrimiva 2995 . 2 (𝜑 → ∀𝑝 ∈ ℙ (𝑝 pCnt (seq1( · , 𝐹)‘𝐾)) = (𝑝 pCnt ((2 · 𝑁)C𝑁)))
1441, 13pcmptcl 15642 . . . . . 6 (𝜑 → (𝐹:ℕ⟶ℕ ∧ seq1( · , 𝐹):ℕ⟶ℕ))
145144simprd 478 . . . . 5 (𝜑 → seq1( · , 𝐹):ℕ⟶ℕ)
146145, 57ffvelrnd 6400 . . . 4 (𝜑 → (seq1( · , 𝐹)‘𝐾) ∈ ℕ)
147146nnnn0d 11389 . . 3 (𝜑 → (seq1( · , 𝐹)‘𝐾) ∈ ℕ0)
14810nnnn0d 11389 . . 3 (𝜑 → ((2 · 𝑁)C𝑁) ∈ ℕ0)
149 pc11 15631 . . 3 (((seq1( · , 𝐹)‘𝐾) ∈ ℕ0 ∧ ((2 · 𝑁)C𝑁) ∈ ℕ0) → ((seq1( · , 𝐹)‘𝐾) = ((2 · 𝑁)C𝑁) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt (seq1( · , 𝐹)‘𝐾)) = (𝑝 pCnt ((2 · 𝑁)C𝑁))))
150147, 148, 149syl2anc 694 . 2 (𝜑 → ((seq1( · , 𝐹)‘𝐾) = ((2 · 𝑁)C𝑁) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt (seq1( · , 𝐹)‘𝐾)) = (𝑝 pCnt ((2 · 𝑁)C𝑁))))
151143, 150mpbird 247 1 (𝜑 → (seq1( · , 𝐹)‘𝐾) = ((2 · 𝑁)C𝑁))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∨ wo 382   ∧ wa 383   = wceq 1523   ∈ wcel 2030  ∀wral 2941  ∃wrex 2942  ifcif 4119   class class class wbr 4685   ↦ cmpt 4762  ⟶wf 5922  ‘cfv 5926  (class class class)co 6690  ℝcr 9973  0cc0 9974  1c1 9975   · cmul 9979   < clt 10112   ≤ cle 10113   / cdiv 10722  ℕcn 11058  2c2 11108  3c3 11109  5c5 11111  ℕ0cn0 11330  ℤcz 11415  ℤ≥cuz 11725  ...cfz 12364  ⌊cfl 12631  seqcseq 12841  ↑cexp 12900  !cfa 13100  Ccbc 13129   ∥ cdvds 15027  ℙcprime 15432   pCnt cpc 15588 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-n0 11331  df-z 11416  df-uz 11726  df-q 11827  df-rp 11871  df-fz 12365  df-fzo 12505  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901  df-fac 13101  df-bc 13130  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-sum 14461  df-dvds 15028  df-gcd 15264  df-prm 15433  df-pc 15589 This theorem is referenced by:  bposlem6  25059
 Copyright terms: Public domain W3C validator