MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  boxriin Structured version   Visualization version   GIF version

Theorem boxriin 7947
Description: A rectangular subset of a rectangular set can be recovered as the relative intersection of single-axis restrictions. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
boxriin (∀𝑥𝐼 𝐴𝐵X𝑥𝐼 𝐴 = (X𝑥𝐼 𝐵 𝑦𝐼 X𝑥𝐼 if(𝑥 = 𝑦, 𝐴, 𝐵)))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑥,𝐼,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem boxriin
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simprl 794 . . . . 5 ((∀𝑥𝐼 𝐴𝐵 ∧ (𝑧 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑧𝑥) ∈ 𝐴)) → 𝑧 Fn 𝐼)
2 ssel 3595 . . . . . . . 8 (𝐴𝐵 → ((𝑧𝑥) ∈ 𝐴 → (𝑧𝑥) ∈ 𝐵))
32ral2imi 2946 . . . . . . 7 (∀𝑥𝐼 𝐴𝐵 → (∀𝑥𝐼 (𝑧𝑥) ∈ 𝐴 → ∀𝑥𝐼 (𝑧𝑥) ∈ 𝐵))
43adantr 481 . . . . . 6 ((∀𝑥𝐼 𝐴𝐵𝑧 Fn 𝐼) → (∀𝑥𝐼 (𝑧𝑥) ∈ 𝐴 → ∀𝑥𝐼 (𝑧𝑥) ∈ 𝐵))
54impr 649 . . . . 5 ((∀𝑥𝐼 𝐴𝐵 ∧ (𝑧 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑧𝑥) ∈ 𝐴)) → ∀𝑥𝐼 (𝑧𝑥) ∈ 𝐵)
6 eleq2 2689 . . . . . . . . . . . 12 (𝐴 = if(𝑥 = 𝑦, 𝐴, 𝐵) → ((𝑧𝑥) ∈ 𝐴 ↔ (𝑧𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵)))
7 eleq2 2689 . . . . . . . . . . . 12 (𝐵 = if(𝑥 = 𝑦, 𝐴, 𝐵) → ((𝑧𝑥) ∈ 𝐵 ↔ (𝑧𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵)))
8 simplr 792 . . . . . . . . . . . 12 (((𝐴𝐵 ∧ (𝑧𝑥) ∈ 𝐴) ∧ 𝑥 = 𝑦) → (𝑧𝑥) ∈ 𝐴)
9 ssel2 3596 . . . . . . . . . . . . 13 ((𝐴𝐵 ∧ (𝑧𝑥) ∈ 𝐴) → (𝑧𝑥) ∈ 𝐵)
109adantr 481 . . . . . . . . . . . 12 (((𝐴𝐵 ∧ (𝑧𝑥) ∈ 𝐴) ∧ ¬ 𝑥 = 𝑦) → (𝑧𝑥) ∈ 𝐵)
116, 7, 8, 10ifbothda 4121 . . . . . . . . . . 11 ((𝐴𝐵 ∧ (𝑧𝑥) ∈ 𝐴) → (𝑧𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵))
1211ex 450 . . . . . . . . . 10 (𝐴𝐵 → ((𝑧𝑥) ∈ 𝐴 → (𝑧𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵)))
1312ral2imi 2946 . . . . . . . . 9 (∀𝑥𝐼 𝐴𝐵 → (∀𝑥𝐼 (𝑧𝑥) ∈ 𝐴 → ∀𝑥𝐼 (𝑧𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵)))
1413adantr 481 . . . . . . . 8 ((∀𝑥𝐼 𝐴𝐵𝑧 Fn 𝐼) → (∀𝑥𝐼 (𝑧𝑥) ∈ 𝐴 → ∀𝑥𝐼 (𝑧𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵)))
1514impr 649 . . . . . . 7 ((∀𝑥𝐼 𝐴𝐵 ∧ (𝑧 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑧𝑥) ∈ 𝐴)) → ∀𝑥𝐼 (𝑧𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵))
161, 15jca 554 . . . . . 6 ((∀𝑥𝐼 𝐴𝐵 ∧ (𝑧 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑧𝑥) ∈ 𝐴)) → (𝑧 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑧𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵)))
1716ralrimivw 2966 . . . . 5 ((∀𝑥𝐼 𝐴𝐵 ∧ (𝑧 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑧𝑥) ∈ 𝐴)) → ∀𝑦𝐼 (𝑧 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑧𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵)))
181, 5, 17jca31 557 . . . 4 ((∀𝑥𝐼 𝐴𝐵 ∧ (𝑧 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑧𝑥) ∈ 𝐴)) → ((𝑧 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑧𝑥) ∈ 𝐵) ∧ ∀𝑦𝐼 (𝑧 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑧𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵))))
19 simprll 802 . . . . 5 ((∀𝑥𝐼 𝐴𝐵 ∧ ((𝑧 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑧𝑥) ∈ 𝐵) ∧ ∀𝑦𝐼 (𝑧 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑧𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵)))) → 𝑧 Fn 𝐼)
20 simpr 477 . . . . . . . 8 ((𝑧 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑧𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵)) → ∀𝑥𝐼 (𝑧𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵))
2120ralimi 2951 . . . . . . 7 (∀𝑦𝐼 (𝑧 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑧𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵)) → ∀𝑦𝐼𝑥𝐼 (𝑧𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵))
22 ralcom 3096 . . . . . . . 8 (∀𝑦𝐼𝑥𝐼 (𝑧𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵) ↔ ∀𝑥𝐼𝑦𝐼 (𝑧𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵))
23 iftrue 4090 . . . . . . . . . . . 12 (𝑥 = 𝑦 → if(𝑥 = 𝑦, 𝐴, 𝐵) = 𝐴)
2423equcoms 1946 . . . . . . . . . . 11 (𝑦 = 𝑥 → if(𝑥 = 𝑦, 𝐴, 𝐵) = 𝐴)
2524eleq2d 2686 . . . . . . . . . 10 (𝑦 = 𝑥 → ((𝑧𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵) ↔ (𝑧𝑥) ∈ 𝐴))
2625rspcva 3305 . . . . . . . . 9 ((𝑥𝐼 ∧ ∀𝑦𝐼 (𝑧𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵)) → (𝑧𝑥) ∈ 𝐴)
2726ralimiaa 2950 . . . . . . . 8 (∀𝑥𝐼𝑦𝐼 (𝑧𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵) → ∀𝑥𝐼 (𝑧𝑥) ∈ 𝐴)
2822, 27sylbi 207 . . . . . . 7 (∀𝑦𝐼𝑥𝐼 (𝑧𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵) → ∀𝑥𝐼 (𝑧𝑥) ∈ 𝐴)
2921, 28syl 17 . . . . . 6 (∀𝑦𝐼 (𝑧 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑧𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵)) → ∀𝑥𝐼 (𝑧𝑥) ∈ 𝐴)
3029ad2antll 765 . . . . 5 ((∀𝑥𝐼 𝐴𝐵 ∧ ((𝑧 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑧𝑥) ∈ 𝐵) ∧ ∀𝑦𝐼 (𝑧 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑧𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵)))) → ∀𝑥𝐼 (𝑧𝑥) ∈ 𝐴)
3119, 30jca 554 . . . 4 ((∀𝑥𝐼 𝐴𝐵 ∧ ((𝑧 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑧𝑥) ∈ 𝐵) ∧ ∀𝑦𝐼 (𝑧 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑧𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵)))) → (𝑧 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑧𝑥) ∈ 𝐴))
3218, 31impbida 877 . . 3 (∀𝑥𝐼 𝐴𝐵 → ((𝑧 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑧𝑥) ∈ 𝐴) ↔ ((𝑧 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑧𝑥) ∈ 𝐵) ∧ ∀𝑦𝐼 (𝑧 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑧𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵)))))
33 vex 3201 . . . 4 𝑧 ∈ V
3433elixp 7912 . . 3 (𝑧X𝑥𝐼 𝐴 ↔ (𝑧 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑧𝑥) ∈ 𝐴))
35 elin 3794 . . . 4 (𝑧 ∈ (X𝑥𝐼 𝐵 𝑦𝐼 X𝑥𝐼 if(𝑥 = 𝑦, 𝐴, 𝐵)) ↔ (𝑧X𝑥𝐼 𝐵𝑧 𝑦𝐼 X𝑥𝐼 if(𝑥 = 𝑦, 𝐴, 𝐵)))
3633elixp 7912 . . . . 5 (𝑧X𝑥𝐼 𝐵 ↔ (𝑧 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑧𝑥) ∈ 𝐵))
37 eliin 4523 . . . . . . 7 (𝑧 ∈ V → (𝑧 𝑦𝐼 X𝑥𝐼 if(𝑥 = 𝑦, 𝐴, 𝐵) ↔ ∀𝑦𝐼 𝑧X𝑥𝐼 if(𝑥 = 𝑦, 𝐴, 𝐵)))
3833, 37ax-mp 5 . . . . . 6 (𝑧 𝑦𝐼 X𝑥𝐼 if(𝑥 = 𝑦, 𝐴, 𝐵) ↔ ∀𝑦𝐼 𝑧X𝑥𝐼 if(𝑥 = 𝑦, 𝐴, 𝐵))
3933elixp 7912 . . . . . . 7 (𝑧X𝑥𝐼 if(𝑥 = 𝑦, 𝐴, 𝐵) ↔ (𝑧 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑧𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵)))
4039ralbii 2979 . . . . . 6 (∀𝑦𝐼 𝑧X𝑥𝐼 if(𝑥 = 𝑦, 𝐴, 𝐵) ↔ ∀𝑦𝐼 (𝑧 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑧𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵)))
4138, 40bitri 264 . . . . 5 (𝑧 𝑦𝐼 X𝑥𝐼 if(𝑥 = 𝑦, 𝐴, 𝐵) ↔ ∀𝑦𝐼 (𝑧 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑧𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵)))
4236, 41anbi12i 733 . . . 4 ((𝑧X𝑥𝐼 𝐵𝑧 𝑦𝐼 X𝑥𝐼 if(𝑥 = 𝑦, 𝐴, 𝐵)) ↔ ((𝑧 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑧𝑥) ∈ 𝐵) ∧ ∀𝑦𝐼 (𝑧 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑧𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵))))
4335, 42bitri 264 . . 3 (𝑧 ∈ (X𝑥𝐼 𝐵 𝑦𝐼 X𝑥𝐼 if(𝑥 = 𝑦, 𝐴, 𝐵)) ↔ ((𝑧 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑧𝑥) ∈ 𝐵) ∧ ∀𝑦𝐼 (𝑧 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑧𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵))))
4432, 34, 433bitr4g 303 . 2 (∀𝑥𝐼 𝐴𝐵 → (𝑧X𝑥𝐼 𝐴𝑧 ∈ (X𝑥𝐼 𝐵 𝑦𝐼 X𝑥𝐼 if(𝑥 = 𝑦, 𝐴, 𝐵))))
4544eqrdv 2619 1 (∀𝑥𝐼 𝐴𝐵X𝑥𝐼 𝐴 = (X𝑥𝐼 𝐵 𝑦𝐼 X𝑥𝐼 if(𝑥 = 𝑦, 𝐴, 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1482  wcel 1989  wral 2911  Vcvv 3198  cin 3571  wss 3572  ifcif 4084   ciin 4519   Fn wfn 5881  cfv 5886  Xcixp 7905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ral 2916  df-rex 2917  df-rab 2920  df-v 3200  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-nul 3914  df-if 4085  df-sn 4176  df-pr 4178  df-op 4182  df-uni 4435  df-iin 4521  df-br 4652  df-opab 4711  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-iota 5849  df-fun 5888  df-fn 5889  df-fv 5894  df-ixp 7906
This theorem is referenced by:  ptcld  21410  kelac1  37459
  Copyright terms: Public domain W3C validator