![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj998 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj69 31416. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj998.1 | ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) |
bnj998.2 | ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
bnj998.3 | ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
bnj998.4 | ⊢ (𝜃 ↔ (𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ pred(𝑦, 𝐴, 𝑅))) |
bnj998.5 | ⊢ (𝜏 ↔ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) |
bnj998.7 | ⊢ (𝜑′ ↔ [𝑝 / 𝑛]𝜑) |
bnj998.8 | ⊢ (𝜓′ ↔ [𝑝 / 𝑛]𝜓) |
bnj998.9 | ⊢ (𝜒′ ↔ [𝑝 / 𝑛]𝜒) |
bnj998.10 | ⊢ (𝜑″ ↔ [𝐺 / 𝑓]𝜑′) |
bnj998.11 | ⊢ (𝜓″ ↔ [𝐺 / 𝑓]𝜓′) |
bnj998.12 | ⊢ (𝜒″ ↔ [𝐺 / 𝑓]𝜒′) |
bnj998.13 | ⊢ 𝐷 = (ω ∖ {∅}) |
bnj998.14 | ⊢ 𝐵 = {𝑓 ∣ ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)} |
bnj998.15 | ⊢ 𝐶 = ∪ 𝑦 ∈ (𝑓‘𝑚) pred(𝑦, 𝐴, 𝑅) |
bnj998.16 | ⊢ 𝐺 = (𝑓 ∪ {〈𝑛, 𝐶〉}) |
Ref | Expression |
---|---|
bnj998 | ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) → 𝜒″) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj998.4 | . . . . . 6 ⊢ (𝜃 ↔ (𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ pred(𝑦, 𝐴, 𝑅))) | |
2 | bnj253 31110 | . . . . . . 7 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ pred(𝑦, 𝐴, 𝑅)) ↔ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ 𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ pred(𝑦, 𝐴, 𝑅))) | |
3 | 2 | simp1bi 1139 | . . . . . 6 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ pred(𝑦, 𝐴, 𝑅)) → (𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴)) |
4 | 1, 3 | sylbi 207 | . . . . 5 ⊢ (𝜃 → (𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴)) |
5 | 4 | bnj705 31161 | . . . 4 ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) → (𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴)) |
6 | bnj643 31157 | . . . 4 ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) → 𝜒) | |
7 | bnj998.5 | . . . . . 6 ⊢ (𝜏 ↔ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) | |
8 | 3simpc 1146 | . . . . . 6 ⊢ ((𝑚 ∈ ω ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) → (𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) | |
9 | 7, 8 | sylbi 207 | . . . . 5 ⊢ (𝜏 → (𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) |
10 | 9 | bnj707 31163 | . . . 4 ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) → (𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) |
11 | bnj255 31111 | . . . 4 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ 𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ↔ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ 𝜒 ∧ (𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛))) | |
12 | 5, 6, 10, 11 | syl3anbrc 1428 | . . 3 ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) → ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ 𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) |
13 | bnj252 31109 | . . 3 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ 𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ↔ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛))) | |
14 | 12, 13 | sylib 208 | . 2 ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) → ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛))) |
15 | bnj998.1 | . . 3 ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) | |
16 | bnj998.2 | . . 3 ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) | |
17 | bnj998.3 | . . 3 ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) | |
18 | bnj998.7 | . . 3 ⊢ (𝜑′ ↔ [𝑝 / 𝑛]𝜑) | |
19 | bnj998.8 | . . 3 ⊢ (𝜓′ ↔ [𝑝 / 𝑛]𝜓) | |
20 | bnj998.9 | . . 3 ⊢ (𝜒′ ↔ [𝑝 / 𝑛]𝜒) | |
21 | bnj998.10 | . . 3 ⊢ (𝜑″ ↔ [𝐺 / 𝑓]𝜑′) | |
22 | bnj998.11 | . . 3 ⊢ (𝜓″ ↔ [𝐺 / 𝑓]𝜓′) | |
23 | bnj998.12 | . . 3 ⊢ (𝜒″ ↔ [𝐺 / 𝑓]𝜒′) | |
24 | bnj998.13 | . . 3 ⊢ 𝐷 = (ω ∖ {∅}) | |
25 | bnj998.14 | . . 3 ⊢ 𝐵 = {𝑓 ∣ ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)} | |
26 | bnj998.15 | . . 3 ⊢ 𝐶 = ∪ 𝑦 ∈ (𝑓‘𝑚) pred(𝑦, 𝐴, 𝑅) | |
27 | bnj998.16 | . . 3 ⊢ 𝐺 = (𝑓 ∪ {〈𝑛, 𝐶〉}) | |
28 | biid 251 | . . 3 ⊢ ((𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ↔ (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) | |
29 | biid 251 | . . 3 ⊢ ((𝑛 ∈ 𝐷 ∧ 𝑝 = suc 𝑛 ∧ 𝑚 ∈ 𝑛) ↔ (𝑛 ∈ 𝐷 ∧ 𝑝 = suc 𝑛 ∧ 𝑚 ∈ 𝑛)) | |
30 | 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 | bnj910 31356 | . 2 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) → 𝜒″) |
31 | 14, 30 | syl 17 | 1 ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) → 𝜒″) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 ∧ w3a 1071 = wceq 1631 ∈ wcel 2145 {cab 2757 ∀wral 3061 ∃wrex 3062 [wsbc 3587 ∖ cdif 3720 ∪ cun 3721 ∅c0 4063 {csn 4317 〈cop 4323 ∪ ciun 4655 suc csuc 5867 Fn wfn 6025 ‘cfv 6030 ωcom 7216 ∧ w-bnj17 31092 predc-bnj14 31094 FrSe w-bnj15 31098 trClc-bnj18 31100 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pr 5035 ax-un 7100 ax-reg 8657 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-om 7217 df-bnj17 31093 df-bnj14 31095 df-bnj13 31097 df-bnj15 31099 |
This theorem is referenced by: bnj1020 31371 |
Copyright terms: Public domain | W3C validator |