Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj970 Structured version   Visualization version   GIF version

Theorem bnj970 31320
Description: Technical lemma for bnj69 31381. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj970.3 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
bnj970.10 𝐷 = (ω ∖ {∅})
Assertion
Ref Expression
bnj970 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → 𝑝𝐷)

Proof of Theorem bnj970
StepHypRef Expression
1 bnj970.3 . . . . 5 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
21bnj1232 31177 . . . 4 (𝜒𝑛𝐷)
323ad2ant1 1128 . . 3 ((𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) → 𝑛𝐷)
43adantl 473 . 2 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → 𝑛𝐷)
5 simpr3 1238 . 2 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → 𝑝 = suc 𝑛)
6 bnj970.10 . . . . 5 𝐷 = (ω ∖ {∅})
76bnj923 31141 . . . 4 (𝑛𝐷𝑛 ∈ ω)
8 peano2 7247 . . . . 5 (𝑛 ∈ ω → suc 𝑛 ∈ ω)
9 eleq1 2823 . . . . 5 (𝑝 = suc 𝑛 → (𝑝 ∈ ω ↔ suc 𝑛 ∈ ω))
10 bianir 1047 . . . . 5 ((suc 𝑛 ∈ ω ∧ (𝑝 ∈ ω ↔ suc 𝑛 ∈ ω)) → 𝑝 ∈ ω)
118, 9, 10syl2an 495 . . . 4 ((𝑛 ∈ ω ∧ 𝑝 = suc 𝑛) → 𝑝 ∈ ω)
127, 11sylan 489 . . 3 ((𝑛𝐷𝑝 = suc 𝑛) → 𝑝 ∈ ω)
13 df-suc 5886 . . . . . 6 suc 𝑛 = (𝑛 ∪ {𝑛})
1413eqeq2i 2768 . . . . 5 (𝑝 = suc 𝑛𝑝 = (𝑛 ∪ {𝑛}))
15 ssun2 3916 . . . . . . 7 {𝑛} ⊆ (𝑛 ∪ {𝑛})
16 vex 3339 . . . . . . . 8 𝑛 ∈ V
1716snnz 4448 . . . . . . 7 {𝑛} ≠ ∅
18 ssn0 4115 . . . . . . 7 (({𝑛} ⊆ (𝑛 ∪ {𝑛}) ∧ {𝑛} ≠ ∅) → (𝑛 ∪ {𝑛}) ≠ ∅)
1915, 17, 18mp2an 710 . . . . . 6 (𝑛 ∪ {𝑛}) ≠ ∅
20 neeq1 2990 . . . . . 6 (𝑝 = (𝑛 ∪ {𝑛}) → (𝑝 ≠ ∅ ↔ (𝑛 ∪ {𝑛}) ≠ ∅))
2119, 20mpbiri 248 . . . . 5 (𝑝 = (𝑛 ∪ {𝑛}) → 𝑝 ≠ ∅)
2214, 21sylbi 207 . . . 4 (𝑝 = suc 𝑛𝑝 ≠ ∅)
2322adantl 473 . . 3 ((𝑛𝐷𝑝 = suc 𝑛) → 𝑝 ≠ ∅)
246eleq2i 2827 . . . 4 (𝑝𝐷𝑝 ∈ (ω ∖ {∅}))
25 eldifsn 4458 . . . 4 (𝑝 ∈ (ω ∖ {∅}) ↔ (𝑝 ∈ ω ∧ 𝑝 ≠ ∅))
2624, 25bitri 264 . . 3 (𝑝𝐷 ↔ (𝑝 ∈ ω ∧ 𝑝 ≠ ∅))
2712, 23, 26sylanbrc 701 . 2 ((𝑛𝐷𝑝 = suc 𝑛) → 𝑝𝐷)
284, 5, 27syl2anc 696 1 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → 𝑝𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1628  wcel 2135  wne 2928  cdif 3708  cun 3709  wss 3711  c0 4054  {csn 4317  suc csuc 5882   Fn wfn 6040  ωcom 7226  w-bnj17 31057   FrSe w-bnj15 31063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1867  ax-4 1882  ax-5 1984  ax-6 2050  ax-7 2086  ax-8 2137  ax-9 2144  ax-10 2164  ax-11 2179  ax-12 2192  ax-13 2387  ax-ext 2736  ax-sep 4929  ax-nul 4937  ax-pr 5051  ax-un 7110
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1631  df-ex 1850  df-nf 1855  df-sb 2043  df-eu 2607  df-mo 2608  df-clab 2743  df-cleq 2749  df-clel 2752  df-nfc 2887  df-ne 2929  df-ral 3051  df-rex 3052  df-rab 3055  df-v 3338  df-sbc 3573  df-dif 3714  df-un 3716  df-in 3718  df-ss 3725  df-pss 3727  df-nul 4055  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4585  df-br 4801  df-opab 4861  df-tr 4901  df-eprel 5175  df-po 5183  df-so 5184  df-fr 5221  df-we 5223  df-ord 5883  df-on 5884  df-lim 5885  df-suc 5886  df-om 7227  df-bnj17 31058
This theorem is referenced by:  bnj910  31321
  Copyright terms: Public domain W3C validator