Mathbox for Jonathan Ben-Naim < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj97 Structured version   Visualization version   GIF version

Theorem bnj97 31274
 Description: Technical lemma for bnj150 31284. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj96.1 𝐹 = {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}
Assertion
Ref Expression
bnj97 ((𝑅 FrSe 𝐴𝑥𝐴) → (𝐹‘∅) = pred(𝑥, 𝐴, 𝑅))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑅
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem bnj97
StepHypRef Expression
1 bnj93 31271 . . 3 ((𝑅 FrSe 𝐴𝑥𝐴) → pred(𝑥, 𝐴, 𝑅) ∈ V)
2 0ex 4924 . . . . 5 ∅ ∈ V
32bnj519 31142 . . . 4 ( pred(𝑥, 𝐴, 𝑅) ∈ V → Fun {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩})
4 bnj96.1 . . . . 5 𝐹 = {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}
54funeqi 6052 . . . 4 (Fun 𝐹 ↔ Fun {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩})
63, 5sylibr 224 . . 3 ( pred(𝑥, 𝐴, 𝑅) ∈ V → Fun 𝐹)
71, 6syl 17 . 2 ((𝑅 FrSe 𝐴𝑥𝐴) → Fun 𝐹)
8 opex 5060 . . . 4 ⟨∅, pred(𝑥, 𝐴, 𝑅)⟩ ∈ V
98snid 4347 . . 3 ⟨∅, pred(𝑥, 𝐴, 𝑅)⟩ ∈ {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}
109, 4eleqtrri 2849 . 2 ⟨∅, pred(𝑥, 𝐴, 𝑅)⟩ ∈ 𝐹
11 funopfv 6376 . 2 (Fun 𝐹 → (⟨∅, pred(𝑥, 𝐴, 𝑅)⟩ ∈ 𝐹 → (𝐹‘∅) = pred(𝑥, 𝐴, 𝑅)))
127, 10, 11mpisyl 21 1 ((𝑅 FrSe 𝐴𝑥𝐴) → (𝐹‘∅) = pred(𝑥, 𝐴, 𝑅))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 382   = wceq 1631   ∈ wcel 2145  Vcvv 3351  ∅c0 4063  {csn 4316  ⟨cop 4322  Fun wfun 6025  ‘cfv 6031   predc-bnj14 31094   FrSe w-bnj15 31098 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pr 5034 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-br 4787  df-opab 4847  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-iota 5994  df-fun 6033  df-fv 6039  df-bnj13 31097  df-bnj15 31099 This theorem is referenced by:  bnj150  31284
 Copyright terms: Public domain W3C validator