Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj966 Structured version   Visualization version   GIF version

Theorem bnj966 31352
Description: Technical lemma for bnj69 31416. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj966.3 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
bnj966.10 𝐷 = (ω ∖ {∅})
bnj966.12 𝐶 = 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)
bnj966.13 𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})
bnj966.44 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → 𝐶 ∈ V)
bnj966.53 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → 𝐺 Fn 𝑝)
Assertion
Ref Expression
bnj966 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑝𝑛 = suc 𝑖)) → (𝐺‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅))
Distinct variable groups:   𝑦,𝑓   𝑦,𝑖   𝑦,𝑚   𝑦,𝑛
Allowed substitution hints:   𝜑(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜓(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜒(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐴(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐶(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐷(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝑅(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐺(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝑋(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)

Proof of Theorem bnj966
StepHypRef Expression
1 bnj966.53 . . . . . 6 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → 𝐺 Fn 𝑝)
21bnj930 31178 . . . . 5 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → Fun 𝐺)
323adant3 1126 . . . 4 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑝𝑛 = suc 𝑖)) → Fun 𝐺)
4 opex 5060 . . . . . . 7 𝑛, 𝐶⟩ ∈ V
54snid 4347 . . . . . 6 𝑛, 𝐶⟩ ∈ {⟨𝑛, 𝐶⟩}
6 elun2 3932 . . . . . 6 (⟨𝑛, 𝐶⟩ ∈ {⟨𝑛, 𝐶⟩} → ⟨𝑛, 𝐶⟩ ∈ (𝑓 ∪ {⟨𝑛, 𝐶⟩}))
75, 6ax-mp 5 . . . . 5 𝑛, 𝐶⟩ ∈ (𝑓 ∪ {⟨𝑛, 𝐶⟩})
8 bnj966.13 . . . . 5 𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})
97, 8eleqtrri 2849 . . . 4 𝑛, 𝐶⟩ ∈ 𝐺
10 funopfv 6376 . . . 4 (Fun 𝐺 → (⟨𝑛, 𝐶⟩ ∈ 𝐺 → (𝐺𝑛) = 𝐶))
113, 9, 10mpisyl 21 . . 3 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑝𝑛 = suc 𝑖)) → (𝐺𝑛) = 𝐶)
12 simp22 1249 . . . 4 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑝𝑛 = suc 𝑖)) → 𝑛 = suc 𝑚)
13 simp33 1253 . . . . 5 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑝𝑛 = suc 𝑖)) → 𝑛 = suc 𝑖)
14 bnj551 31150 . . . . 5 ((𝑛 = suc 𝑚𝑛 = suc 𝑖) → 𝑚 = 𝑖)
1512, 13, 14syl2anc 573 . . . 4 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑝𝑛 = suc 𝑖)) → 𝑚 = 𝑖)
16 suceq 5933 . . . . . . . 8 (𝑚 = 𝑖 → suc 𝑚 = suc 𝑖)
1716eqeq2d 2781 . . . . . . 7 (𝑚 = 𝑖 → (𝑛 = suc 𝑚𝑛 = suc 𝑖))
1817biimpac 464 . . . . . 6 ((𝑛 = suc 𝑚𝑚 = 𝑖) → 𝑛 = suc 𝑖)
1918fveq2d 6336 . . . . 5 ((𝑛 = suc 𝑚𝑚 = 𝑖) → (𝐺𝑛) = (𝐺‘suc 𝑖))
20 bnj966.12 . . . . . . 7 𝐶 = 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)
21 fveq2 6332 . . . . . . . 8 (𝑚 = 𝑖 → (𝑓𝑚) = (𝑓𝑖))
2221bnj1113 31194 . . . . . . 7 (𝑚 = 𝑖 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))
2320, 22syl5eq 2817 . . . . . 6 (𝑚 = 𝑖𝐶 = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))
2423adantl 467 . . . . 5 ((𝑛 = suc 𝑚𝑚 = 𝑖) → 𝐶 = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))
2519, 24eqeq12d 2786 . . . 4 ((𝑛 = suc 𝑚𝑚 = 𝑖) → ((𝐺𝑛) = 𝐶 ↔ (𝐺‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
2612, 15, 25syl2anc 573 . . 3 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑝𝑛 = suc 𝑖)) → ((𝐺𝑛) = 𝐶 ↔ (𝐺‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
2711, 26mpbid 222 . 2 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑝𝑛 = suc 𝑖)) → (𝐺‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))
28 bnj966.44 . . . . . 6 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → 𝐶 ∈ V)
29283adant3 1126 . . . . 5 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑝𝑛 = suc 𝑖)) → 𝐶 ∈ V)
30 bnj966.3 . . . . . . . 8 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
3130bnj1235 31213 . . . . . . 7 (𝜒𝑓 Fn 𝑛)
32313ad2ant1 1127 . . . . . 6 ((𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) → 𝑓 Fn 𝑛)
33323ad2ant2 1128 . . . . 5 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑝𝑛 = suc 𝑖)) → 𝑓 Fn 𝑛)
34 simp23 1250 . . . . 5 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑝𝑛 = suc 𝑖)) → 𝑝 = suc 𝑛)
3529, 33, 34, 13bnj951 31184 . . . 4 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑝𝑛 = suc 𝑖)) → (𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛𝑛 = suc 𝑖))
36 bnj966.10 . . . . . . . . 9 𝐷 = (ω ∖ {∅})
3736bnj923 31176 . . . . . . . 8 (𝑛𝐷𝑛 ∈ ω)
3830, 37bnj769 31170 . . . . . . 7 (𝜒𝑛 ∈ ω)
39383ad2ant1 1127 . . . . . 6 ((𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) → 𝑛 ∈ ω)
40 simp3 1132 . . . . . 6 ((𝑖 ∈ ω ∧ suc 𝑖𝑝𝑛 = suc 𝑖) → 𝑛 = suc 𝑖)
4139, 40bnj240 31105 . . . . 5 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑝𝑛 = suc 𝑖)) → (𝑛 ∈ ω ∧ 𝑛 = suc 𝑖))
42 vex 3354 . . . . . . 7 𝑖 ∈ V
4342bnj216 31138 . . . . . 6 (𝑛 = suc 𝑖𝑖𝑛)
4443adantl 467 . . . . 5 ((𝑛 ∈ ω ∧ 𝑛 = suc 𝑖) → 𝑖𝑛)
4541, 44syl 17 . . . 4 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑝𝑛 = suc 𝑖)) → 𝑖𝑛)
46 bnj658 31159 . . . . . . 7 ((𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛𝑛 = suc 𝑖) → (𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛))
4746anim1i 602 . . . . . 6 (((𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛𝑛 = suc 𝑖) ∧ 𝑖𝑛) → ((𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛) ∧ 𝑖𝑛))
48 df-bnj17 31093 . . . . . 6 ((𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛𝑖𝑛) ↔ ((𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛) ∧ 𝑖𝑛))
4947, 48sylibr 224 . . . . 5 (((𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛𝑛 = suc 𝑖) ∧ 𝑖𝑛) → (𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛𝑖𝑛))
508bnj945 31182 . . . . 5 ((𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛𝑖𝑛) → (𝐺𝑖) = (𝑓𝑖))
5149, 50syl 17 . . . 4 (((𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛𝑛 = suc 𝑖) ∧ 𝑖𝑛) → (𝐺𝑖) = (𝑓𝑖))
5235, 45, 51syl2anc 573 . . 3 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑝𝑛 = suc 𝑖)) → (𝐺𝑖) = (𝑓𝑖))
5320, 8bnj958 31348 . . . . 5 ((𝐺𝑖) = (𝑓𝑖) → ∀𝑦(𝐺𝑖) = (𝑓𝑖))
5453bnj956 31185 . . . 4 ((𝐺𝑖) = (𝑓𝑖) → 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))
5554eqeq2d 2781 . . 3 ((𝐺𝑖) = (𝑓𝑖) → ((𝐺‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅) ↔ (𝐺‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
5652, 55syl 17 . 2 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑝𝑛 = suc 𝑖)) → ((𝐺‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅) ↔ (𝐺‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
5727, 56mpbird 247 1 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑝𝑛 = suc 𝑖)) → (𝐺‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  Vcvv 3351  cdif 3720  cun 3721  c0 4063  {csn 4316  cop 4322   ciun 4654  suc csuc 5868  Fun wfun 6025   Fn wfn 6026  cfv 6031  ωcom 7212  w-bnj17 31092   predc-bnj14 31094   FrSe w-bnj15 31098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pr 5034  ax-un 7096  ax-reg 8653
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-id 5157  df-eprel 5162  df-fr 5208  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-res 5261  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-fv 6039  df-bnj17 31093
This theorem is referenced by:  bnj910  31356
  Copyright terms: Public domain W3C validator