![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj956 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj956.1 | ⊢ (𝐴 = 𝐵 → ∀𝑥 𝐴 = 𝐵) |
Ref | Expression |
---|---|
bnj956 | ⊢ (𝐴 = 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj956.1 | . . . 4 ⊢ (𝐴 = 𝐵 → ∀𝑥 𝐴 = 𝐵) | |
2 | eleq2 2828 | . . . . . . 7 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
3 | 2 | anbi1d 743 | . . . . . 6 ⊢ (𝐴 = 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) |
4 | 3 | alexbii 1909 | . . . . 5 ⊢ (∀𝑥 𝐴 = 𝐵 → (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) |
5 | df-rex 3056 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)) | |
6 | df-rex 3056 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐵 𝑦 ∈ 𝐶 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) | |
7 | 4, 5, 6 | 3bitr4g 303 | . . . 4 ⊢ (∀𝑥 𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ↔ ∃𝑥 ∈ 𝐵 𝑦 ∈ 𝐶)) |
8 | 1, 7 | syl 17 | . . 3 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ↔ ∃𝑥 ∈ 𝐵 𝑦 ∈ 𝐶)) |
9 | 8 | abbidv 2879 | . 2 ⊢ (𝐴 = 𝐵 → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐶} = {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑦 ∈ 𝐶}) |
10 | df-iun 4674 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 𝐶 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐶} | |
11 | df-iun 4674 | . 2 ⊢ ∪ 𝑥 ∈ 𝐵 𝐶 = {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑦 ∈ 𝐶} | |
12 | 9, 10, 11 | 3eqtr4g 2819 | 1 ⊢ (𝐴 = 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∀wal 1630 = wceq 1632 ∃wex 1853 ∈ wcel 2139 {cab 2746 ∃wrex 3051 ∪ ciun 4672 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-rex 3056 df-iun 4674 |
This theorem is referenced by: bnj1316 31219 bnj953 31337 bnj1000 31339 bnj966 31342 |
Copyright terms: Public domain | W3C validator |