![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj923 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj923.1 | ⊢ 𝐷 = (ω ∖ {∅}) |
Ref | Expression |
---|---|
bnj923 | ⊢ (𝑛 ∈ 𝐷 → 𝑛 ∈ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifi 3875 | . 2 ⊢ (𝑛 ∈ (ω ∖ {∅}) → 𝑛 ∈ ω) | |
2 | bnj923.1 | . 2 ⊢ 𝐷 = (ω ∖ {∅}) | |
3 | 1, 2 | eleq2s 2857 | 1 ⊢ (𝑛 ∈ 𝐷 → 𝑛 ∈ ω) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∈ wcel 2139 ∖ cdif 3712 ∅c0 4058 {csn 4321 ωcom 7230 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-v 3342 df-dif 3718 |
This theorem is referenced by: bnj1098 31161 bnj544 31271 bnj546 31273 bnj594 31289 bnj580 31290 bnj966 31321 bnj967 31322 bnj970 31324 bnj1001 31335 bnj1053 31351 bnj1071 31352 bnj1118 31359 bnj1128 31365 bnj1145 31368 |
Copyright terms: Public domain | W3C validator |