![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj900 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj69 31204. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj900.3 | ⊢ 𝐷 = (ω ∖ {∅}) |
bnj900.4 | ⊢ 𝐵 = {𝑓 ∣ ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)} |
Ref | Expression |
---|---|
bnj900 | ⊢ (𝑓 ∈ 𝐵 → ∅ ∈ dom 𝑓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj900.4 | . . . . . 6 ⊢ 𝐵 = {𝑓 ∣ ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)} | |
2 | 1 | bnj1436 31036 | . . . . 5 ⊢ (𝑓 ∈ 𝐵 → ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
3 | simp1 1081 | . . . . . 6 ⊢ ((𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) → 𝑓 Fn 𝑛) | |
4 | 3 | reximi 3040 | . . . . 5 ⊢ (∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) → ∃𝑛 ∈ 𝐷 𝑓 Fn 𝑛) |
5 | fndm 6028 | . . . . . 6 ⊢ (𝑓 Fn 𝑛 → dom 𝑓 = 𝑛) | |
6 | 5 | reximi 3040 | . . . . 5 ⊢ (∃𝑛 ∈ 𝐷 𝑓 Fn 𝑛 → ∃𝑛 ∈ 𝐷 dom 𝑓 = 𝑛) |
7 | 2, 4, 6 | 3syl 18 | . . . 4 ⊢ (𝑓 ∈ 𝐵 → ∃𝑛 ∈ 𝐷 dom 𝑓 = 𝑛) |
8 | 7 | bnj1196 30991 | . . 3 ⊢ (𝑓 ∈ 𝐵 → ∃𝑛(𝑛 ∈ 𝐷 ∧ dom 𝑓 = 𝑛)) |
9 | nfre1 3034 | . . . . . . 7 ⊢ Ⅎ𝑛∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) | |
10 | 9 | nfab 2798 | . . . . . 6 ⊢ Ⅎ𝑛{𝑓 ∣ ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)} |
11 | 1, 10 | nfcxfr 2791 | . . . . 5 ⊢ Ⅎ𝑛𝐵 |
12 | 11 | nfcri 2787 | . . . 4 ⊢ Ⅎ𝑛 𝑓 ∈ 𝐵 |
13 | 12 | 19.37 2138 | . . 3 ⊢ (∃𝑛(𝑓 ∈ 𝐵 → (𝑛 ∈ 𝐷 ∧ dom 𝑓 = 𝑛)) ↔ (𝑓 ∈ 𝐵 → ∃𝑛(𝑛 ∈ 𝐷 ∧ dom 𝑓 = 𝑛))) |
14 | 8, 13 | mpbir 221 | . 2 ⊢ ∃𝑛(𝑓 ∈ 𝐵 → (𝑛 ∈ 𝐷 ∧ dom 𝑓 = 𝑛)) |
15 | nfv 1883 | . . . 4 ⊢ Ⅎ𝑛∅ ∈ dom 𝑓 | |
16 | 12, 15 | nfim 1865 | . . 3 ⊢ Ⅎ𝑛(𝑓 ∈ 𝐵 → ∅ ∈ dom 𝑓) |
17 | bnj900.3 | . . . . . 6 ⊢ 𝐷 = (ω ∖ {∅}) | |
18 | 17 | bnj529 30937 | . . . . 5 ⊢ (𝑛 ∈ 𝐷 → ∅ ∈ 𝑛) |
19 | eleq2 2719 | . . . . . 6 ⊢ (dom 𝑓 = 𝑛 → (∅ ∈ dom 𝑓 ↔ ∅ ∈ 𝑛)) | |
20 | 19 | biimparc 503 | . . . . 5 ⊢ ((∅ ∈ 𝑛 ∧ dom 𝑓 = 𝑛) → ∅ ∈ dom 𝑓) |
21 | 18, 20 | sylan 487 | . . . 4 ⊢ ((𝑛 ∈ 𝐷 ∧ dom 𝑓 = 𝑛) → ∅ ∈ dom 𝑓) |
22 | 21 | imim2i 16 | . . 3 ⊢ ((𝑓 ∈ 𝐵 → (𝑛 ∈ 𝐷 ∧ dom 𝑓 = 𝑛)) → (𝑓 ∈ 𝐵 → ∅ ∈ dom 𝑓)) |
23 | 16, 22 | exlimi 2124 | . 2 ⊢ (∃𝑛(𝑓 ∈ 𝐵 → (𝑛 ∈ 𝐷 ∧ dom 𝑓 = 𝑛)) → (𝑓 ∈ 𝐵 → ∅ ∈ dom 𝑓)) |
24 | 14, 23 | ax-mp 5 | 1 ⊢ (𝑓 ∈ 𝐵 → ∅ ∈ dom 𝑓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1054 = wceq 1523 ∃wex 1744 ∈ wcel 2030 {cab 2637 ∃wrex 2942 ∖ cdif 3604 ∅c0 3948 {csn 4210 dom cdm 5143 Fn wfn 5921 ωcom 7107 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-tr 4786 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-fn 5929 df-om 7108 |
This theorem is referenced by: bnj906 31126 |
Copyright terms: Public domain | W3C validator |