Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj864 Structured version   Visualization version   GIF version

Theorem bnj864 31330
Description: Technical lemma for bnj69 31416. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj864.1 (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
bnj864.2 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj864.3 𝐷 = (ω ∖ {∅})
bnj864.4 (𝜒 ↔ (𝑅 FrSe 𝐴𝑋𝐴𝑛𝐷))
bnj864.5 (𝜃 ↔ (𝑓 Fn 𝑛𝜑𝜓))
Assertion
Ref Expression
bnj864 (𝜒 → ∃!𝑓𝜃)
Distinct variable groups:   𝐴,𝑓,𝑖,𝑛,𝑦   𝐷,𝑓,𝑖,𝑛   𝑅,𝑓,𝑖,𝑛,𝑦   𝑓,𝑋,𝑛
Allowed substitution hints:   𝜑(𝑦,𝑓,𝑖,𝑛)   𝜓(𝑦,𝑓,𝑖,𝑛)   𝜒(𝑦,𝑓,𝑖,𝑛)   𝜃(𝑦,𝑓,𝑖,𝑛)   𝐷(𝑦)   𝑋(𝑦,𝑖)

Proof of Theorem bnj864
StepHypRef Expression
1 bnj864.1 . . . . 5 (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
2 bnj864.2 . . . . 5 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
3 bnj864.3 . . . . 5 𝐷 = (ω ∖ {∅})
41, 2, 3bnj852 31329 . . . 4 ((𝑅 FrSe 𝐴𝑋𝐴) → ∀𝑛𝐷 ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓))
5 df-ral 3066 . . . . . 6 (∀𝑛𝐷 ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓) ↔ ∀𝑛(𝑛𝐷 → ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)))
65imbi2i 325 . . . . 5 (((𝑅 FrSe 𝐴𝑋𝐴) → ∀𝑛𝐷 ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)) ↔ ((𝑅 FrSe 𝐴𝑋𝐴) → ∀𝑛(𝑛𝐷 → ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓))))
7 19.21v 2020 . . . . 5 (∀𝑛((𝑅 FrSe 𝐴𝑋𝐴) → (𝑛𝐷 → ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓))) ↔ ((𝑅 FrSe 𝐴𝑋𝐴) → ∀𝑛(𝑛𝐷 → ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓))))
8 impexp 437 . . . . . . 7 ((((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑛𝐷) → ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)) ↔ ((𝑅 FrSe 𝐴𝑋𝐴) → (𝑛𝐷 → ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓))))
9 df-3an 1073 . . . . . . . . 9 ((𝑅 FrSe 𝐴𝑋𝐴𝑛𝐷) ↔ ((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑛𝐷))
109bicomi 214 . . . . . . . 8 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑛𝐷) ↔ (𝑅 FrSe 𝐴𝑋𝐴𝑛𝐷))
1110imbi1i 338 . . . . . . 7 ((((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑛𝐷) → ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)) ↔ ((𝑅 FrSe 𝐴𝑋𝐴𝑛𝐷) → ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)))
128, 11bitr3i 266 . . . . . 6 (((𝑅 FrSe 𝐴𝑋𝐴) → (𝑛𝐷 → ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓))) ↔ ((𝑅 FrSe 𝐴𝑋𝐴𝑛𝐷) → ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)))
1312albii 1895 . . . . 5 (∀𝑛((𝑅 FrSe 𝐴𝑋𝐴) → (𝑛𝐷 → ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓))) ↔ ∀𝑛((𝑅 FrSe 𝐴𝑋𝐴𝑛𝐷) → ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)))
146, 7, 133bitr2i 288 . . . 4 (((𝑅 FrSe 𝐴𝑋𝐴) → ∀𝑛𝐷 ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)) ↔ ∀𝑛((𝑅 FrSe 𝐴𝑋𝐴𝑛𝐷) → ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)))
154, 14mpbi 220 . . 3 𝑛((𝑅 FrSe 𝐴𝑋𝐴𝑛𝐷) → ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓))
1615spi 2208 . 2 ((𝑅 FrSe 𝐴𝑋𝐴𝑛𝐷) → ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓))
17 bnj864.4 . 2 (𝜒 ↔ (𝑅 FrSe 𝐴𝑋𝐴𝑛𝐷))
18 bnj864.5 . . 3 (𝜃 ↔ (𝑓 Fn 𝑛𝜑𝜓))
1918eubii 2640 . 2 (∃!𝑓𝜃 ↔ ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓))
2016, 17, 193imtr4i 281 1 (𝜒 → ∃!𝑓𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071  wal 1629   = wceq 1631  wcel 2145  ∃!weu 2618  wral 3061  cdif 3720  c0 4063  {csn 4316   ciun 4654  suc csuc 5868   Fn wfn 6026  cfv 6031  ωcom 7212   predc-bnj14 31094   FrSe w-bnj15 31098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-reg 8653  ax-inf2 8702
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-om 7213  df-1o 7713  df-bnj17 31093  df-bnj14 31095  df-bnj13 31097  df-bnj15 31099
This theorem is referenced by:  bnj849  31333
  Copyright terms: Public domain W3C validator