Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj589 Structured version   Visualization version   GIF version

Theorem bnj589 31257
Description: Technical lemma for bnj852 31269. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj589.1 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
Assertion
Ref Expression
bnj589 (𝜓 ↔ ∀𝑘 ∈ ω (suc 𝑘𝑛 → (𝑓‘suc 𝑘) = 𝑦 ∈ (𝑓𝑘) pred(𝑦, 𝐴, 𝑅)))
Distinct variable groups:   𝐴,𝑖,𝑘   𝑅,𝑖,𝑘   𝑓,𝑖,𝑘,𝑦   𝑖,𝑛,𝑘
Allowed substitution hints:   𝜓(𝑦,𝑓,𝑖,𝑘,𝑛)   𝐴(𝑦,𝑓,𝑛)   𝑅(𝑦,𝑓,𝑛)

Proof of Theorem bnj589
StepHypRef Expression
1 bnj589.1 . 2 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
21bnj222 31231 1 (𝜓 ↔ ∀𝑘 ∈ ω (suc 𝑘𝑛 → (𝑓‘suc 𝑘) = 𝑦 ∈ (𝑓𝑘) pred(𝑦, 𝐴, 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1620  wcel 2127  wral 3038   ciun 4660  suc csuc 5874  cfv 6037  ωcom 7218   predc-bnj14 31034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ral 3043  df-rex 3044  df-rab 3047  df-v 3330  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-nul 4047  df-if 4219  df-sn 4310  df-pr 4312  df-op 4316  df-uni 4577  df-iun 4662  df-br 4793  df-suc 5878  df-iota 6000  df-fv 6045
This theorem is referenced by:  bnj594  31260  bnj1128  31336  bnj1145  31339
  Copyright terms: Public domain W3C validator