Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj570 Structured version   Visualization version   GIF version

Theorem bnj570 31313
Description: Technical lemma for bnj852 31329. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj570.3 𝐷 = (ω ∖ {∅})
bnj570.17 (𝜏 ↔ (𝑓 Fn 𝑚𝜑′𝜓′))
bnj570.19 (𝜂 ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝 ∈ ω ∧ 𝑚 = suc 𝑝))
bnj570.21 (𝜌 ↔ (𝑖 ∈ ω ∧ suc 𝑖𝑛𝑚 ≠ suc 𝑖))
bnj570.24 𝐾 = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅)
bnj570.26 𝐺 = (𝑓 ∪ {⟨𝑚, 𝐶⟩})
bnj570.40 ((𝑅 FrSe 𝐴𝜏𝜂) → 𝐺 Fn 𝑛)
bnj570.30 (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖𝑚 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
Assertion
Ref Expression
bnj570 ((𝑅 FrSe 𝐴𝜏𝜂𝜌) → (𝐺‘suc 𝑖) = 𝐾)
Distinct variable groups:   𝑦,𝐺   𝑦,𝑓   𝑦,𝑖
Allowed substitution hints:   𝜏(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜂(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜌(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐴(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐶(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐷(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝑅(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐺(𝑓,𝑖,𝑚,𝑛,𝑝)   𝐾(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜑′(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜓′(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)

Proof of Theorem bnj570
StepHypRef Expression
1 bnj251 31108 . . . 4 ((𝑅 FrSe 𝐴𝜏𝜂𝜌) ↔ (𝑅 FrSe 𝐴 ∧ (𝜏 ∧ (𝜂𝜌))))
2 bnj570.17 . . . . . 6 (𝜏 ↔ (𝑓 Fn 𝑚𝜑′𝜓′))
32simp3bi 1141 . . . . 5 (𝜏𝜓′)
4 bnj570.21 . . . . . . . 8 (𝜌 ↔ (𝑖 ∈ ω ∧ suc 𝑖𝑛𝑚 ≠ suc 𝑖))
54simp1bi 1139 . . . . . . 7 (𝜌𝑖 ∈ ω)
65adantl 467 . . . . . 6 ((𝜂𝜌) → 𝑖 ∈ ω)
7 bnj570.19 . . . . . . 7 (𝜂 ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝 ∈ ω ∧ 𝑚 = suc 𝑝))
87, 4bnj563 31151 . . . . . 6 ((𝜂𝜌) → suc 𝑖𝑚)
96, 8jca 501 . . . . 5 ((𝜂𝜌) → (𝑖 ∈ ω ∧ suc 𝑖𝑚))
10 bnj570.30 . . . . . . . 8 (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖𝑚 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
1110bnj946 31183 . . . . . . 7 (𝜓′ ↔ ∀𝑖(𝑖 ∈ ω → (suc 𝑖𝑚 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))))
12 sp 2207 . . . . . . 7 (∀𝑖(𝑖 ∈ ω → (suc 𝑖𝑚 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))) → (𝑖 ∈ ω → (suc 𝑖𝑚 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))))
1311, 12sylbi 207 . . . . . 6 (𝜓′ → (𝑖 ∈ ω → (suc 𝑖𝑚 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))))
1413imp32 405 . . . . 5 ((𝜓′ ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑚)) → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))
153, 9, 14syl2an 583 . . . 4 ((𝜏 ∧ (𝜂𝜌)) → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))
161, 15simplbiim 493 . . 3 ((𝑅 FrSe 𝐴𝜏𝜂𝜌) → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))
17 bnj570.40 . . . . . 6 ((𝑅 FrSe 𝐴𝜏𝜂) → 𝐺 Fn 𝑛)
1817bnj930 31178 . . . . 5 ((𝑅 FrSe 𝐴𝜏𝜂) → Fun 𝐺)
1918bnj721 31165 . . . 4 ((𝑅 FrSe 𝐴𝜏𝜂𝜌) → Fun 𝐺)
20 bnj570.26 . . . . . 6 𝐺 = (𝑓 ∪ {⟨𝑚, 𝐶⟩})
2120bnj931 31179 . . . . 5 𝑓𝐺
2221a1i 11 . . . 4 ((𝑅 FrSe 𝐴𝜏𝜂𝜌) → 𝑓𝐺)
23 bnj667 31160 . . . . 5 ((𝑅 FrSe 𝐴𝜏𝜂𝜌) → (𝜏𝜂𝜌))
242bnj564 31152 . . . . . . 7 (𝜏 → dom 𝑓 = 𝑚)
25 eleq2 2839 . . . . . . . 8 (dom 𝑓 = 𝑚 → (suc 𝑖 ∈ dom 𝑓 ↔ suc 𝑖𝑚))
2625biimpar 463 . . . . . . 7 ((dom 𝑓 = 𝑚 ∧ suc 𝑖𝑚) → suc 𝑖 ∈ dom 𝑓)
2724, 8, 26syl2an 583 . . . . . 6 ((𝜏 ∧ (𝜂𝜌)) → suc 𝑖 ∈ dom 𝑓)
28273impb 1107 . . . . 5 ((𝜏𝜂𝜌) → suc 𝑖 ∈ dom 𝑓)
2923, 28syl 17 . . . 4 ((𝑅 FrSe 𝐴𝜏𝜂𝜌) → suc 𝑖 ∈ dom 𝑓)
3019, 22, 29bnj1502 31256 . . 3 ((𝑅 FrSe 𝐴𝜏𝜂𝜌) → (𝐺‘suc 𝑖) = (𝑓‘suc 𝑖))
312simp1bi 1139 . . . . . . . . 9 (𝜏𝑓 Fn 𝑚)
32 bnj252 31109 . . . . . . . . . . . . . 14 ((𝑚𝐷𝑛 = suc 𝑚𝑝 ∈ ω ∧ 𝑚 = suc 𝑝) ↔ (𝑚𝐷 ∧ (𝑛 = suc 𝑚𝑝 ∈ ω ∧ 𝑚 = suc 𝑝)))
3332simplbi 485 . . . . . . . . . . . . 13 ((𝑚𝐷𝑛 = suc 𝑚𝑝 ∈ ω ∧ 𝑚 = suc 𝑝) → 𝑚𝐷)
347, 33sylbi 207 . . . . . . . . . . . 12 (𝜂𝑚𝐷)
35 eldifi 3883 . . . . . . . . . . . . 13 (𝑚 ∈ (ω ∖ {∅}) → 𝑚 ∈ ω)
36 bnj570.3 . . . . . . . . . . . . 13 𝐷 = (ω ∖ {∅})
3735, 36eleq2s 2868 . . . . . . . . . . . 12 (𝑚𝐷𝑚 ∈ ω)
38 nnord 7220 . . . . . . . . . . . 12 (𝑚 ∈ ω → Ord 𝑚)
3934, 37, 383syl 18 . . . . . . . . . . 11 (𝜂 → Ord 𝑚)
4039adantr 466 . . . . . . . . . 10 ((𝜂𝜌) → Ord 𝑚)
4140, 8jca 501 . . . . . . . . 9 ((𝜂𝜌) → (Ord 𝑚 ∧ suc 𝑖𝑚))
4231, 41anim12i 600 . . . . . . . 8 ((𝜏 ∧ (𝜂𝜌)) → (𝑓 Fn 𝑚 ∧ (Ord 𝑚 ∧ suc 𝑖𝑚)))
43 fndm 6130 . . . . . . . . 9 (𝑓 Fn 𝑚 → dom 𝑓 = 𝑚)
44 elelsuc 5940 . . . . . . . . . 10 (suc 𝑖𝑚 → suc 𝑖 ∈ suc 𝑚)
45 ordsucelsuc 7169 . . . . . . . . . . 11 (Ord 𝑚 → (𝑖𝑚 ↔ suc 𝑖 ∈ suc 𝑚))
4645biimpar 463 . . . . . . . . . 10 ((Ord 𝑚 ∧ suc 𝑖 ∈ suc 𝑚) → 𝑖𝑚)
4744, 46sylan2 580 . . . . . . . . 9 ((Ord 𝑚 ∧ suc 𝑖𝑚) → 𝑖𝑚)
4843, 47anim12i 600 . . . . . . . 8 ((𝑓 Fn 𝑚 ∧ (Ord 𝑚 ∧ suc 𝑖𝑚)) → (dom 𝑓 = 𝑚𝑖𝑚))
49 eleq2 2839 . . . . . . . . 9 (dom 𝑓 = 𝑚 → (𝑖 ∈ dom 𝑓𝑖𝑚))
5049biimpar 463 . . . . . . . 8 ((dom 𝑓 = 𝑚𝑖𝑚) → 𝑖 ∈ dom 𝑓)
5142, 48, 503syl 18 . . . . . . 7 ((𝜏 ∧ (𝜂𝜌)) → 𝑖 ∈ dom 𝑓)
52513impb 1107 . . . . . 6 ((𝜏𝜂𝜌) → 𝑖 ∈ dom 𝑓)
5323, 52syl 17 . . . . 5 ((𝑅 FrSe 𝐴𝜏𝜂𝜌) → 𝑖 ∈ dom 𝑓)
5419, 22, 53bnj1502 31256 . . . 4 ((𝑅 FrSe 𝐴𝜏𝜂𝜌) → (𝐺𝑖) = (𝑓𝑖))
5554iuneq1d 4679 . . 3 ((𝑅 FrSe 𝐴𝜏𝜂𝜌) → 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))
5616, 30, 553eqtr4d 2815 . 2 ((𝑅 FrSe 𝐴𝜏𝜂𝜌) → (𝐺‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅))
57 bnj570.24 . 2 𝐾 = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅)
5856, 57syl6eqr 2823 1 ((𝑅 FrSe 𝐴𝜏𝜂𝜌) → (𝐺‘suc 𝑖) = 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071  wal 1629   = wceq 1631  wcel 2145  wne 2943  wral 3061  cdif 3720  cun 3721  wss 3723  c0 4063  {csn 4316  cop 4322   ciun 4654  dom cdm 5249  Ord word 5865  suc csuc 5868  Fun wfun 6025   Fn wfn 6026  cfv 6031  ωcom 7212  w-bnj17 31092   predc-bnj14 31094   FrSe w-bnj15 31098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pr 5034  ax-un 7096
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-res 5261  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-fv 6039  df-om 7213  df-bnj17 31093
This theorem is referenced by:  bnj571  31314
  Copyright terms: Public domain W3C validator