Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj545 Structured version   Visualization version   GIF version

Theorem bnj545 31091
Description: Technical lemma for bnj852 31117. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj545.1 (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
bnj545.2 𝐷 = (ω ∖ {∅})
bnj545.3 𝐺 = (𝑓 ∪ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩})
bnj545.4 (𝜏 ↔ (𝑓 Fn 𝑚𝜑′𝜓′))
bnj545.5 (𝜎 ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝𝑚))
bnj545.6 ((𝑅 FrSe 𝐴𝜏𝜎) → 𝐺 Fn 𝑛)
bnj545.7 (𝜑″ ↔ (𝐺‘∅) = pred(𝑥, 𝐴, 𝑅))
Assertion
Ref Expression
bnj545 ((𝑅 FrSe 𝐴𝜏𝜎) → 𝜑″)

Proof of Theorem bnj545
StepHypRef Expression
1 bnj545.4 . . . . . . . . . 10 (𝜏 ↔ (𝑓 Fn 𝑚𝜑′𝜓′))
21simp1bi 1096 . . . . . . . . 9 (𝜏𝑓 Fn 𝑚)
3 bnj545.5 . . . . . . . . . 10 (𝜎 ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝𝑚))
43simp1bi 1096 . . . . . . . . 9 (𝜎𝑚𝐷)
52, 4anim12i 589 . . . . . . . 8 ((𝜏𝜎) → (𝑓 Fn 𝑚𝑚𝐷))
653adant1 1099 . . . . . . 7 ((𝑅 FrSe 𝐴𝜏𝜎) → (𝑓 Fn 𝑚𝑚𝐷))
7 bnj545.2 . . . . . . . . 9 𝐷 = (ω ∖ {∅})
87bnj529 30937 . . . . . . . 8 (𝑚𝐷 → ∅ ∈ 𝑚)
9 fndm 6028 . . . . . . . 8 (𝑓 Fn 𝑚 → dom 𝑓 = 𝑚)
10 eleq2 2719 . . . . . . . . 9 (dom 𝑓 = 𝑚 → (∅ ∈ dom 𝑓 ↔ ∅ ∈ 𝑚))
1110biimparc 503 . . . . . . . 8 ((∅ ∈ 𝑚 ∧ dom 𝑓 = 𝑚) → ∅ ∈ dom 𝑓)
128, 9, 11syl2anr 494 . . . . . . 7 ((𝑓 Fn 𝑚𝑚𝐷) → ∅ ∈ dom 𝑓)
136, 12syl 17 . . . . . 6 ((𝑅 FrSe 𝐴𝜏𝜎) → ∅ ∈ dom 𝑓)
14 bnj545.6 . . . . . . 7 ((𝑅 FrSe 𝐴𝜏𝜎) → 𝐺 Fn 𝑛)
1514bnj930 30966 . . . . . 6 ((𝑅 FrSe 𝐴𝜏𝜎) → Fun 𝐺)
1613, 15jca 553 . . . . 5 ((𝑅 FrSe 𝐴𝜏𝜎) → (∅ ∈ dom 𝑓 ∧ Fun 𝐺))
17 bnj545.3 . . . . . 6 𝐺 = (𝑓 ∪ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩})
1817bnj931 30967 . . . . 5 𝑓𝐺
1916, 18jctil 559 . . . 4 ((𝑅 FrSe 𝐴𝜏𝜎) → (𝑓𝐺 ∧ (∅ ∈ dom 𝑓 ∧ Fun 𝐺)))
20 df-3an 1056 . . . . 5 ((∅ ∈ dom 𝑓 ∧ Fun 𝐺𝑓𝐺) ↔ ((∅ ∈ dom 𝑓 ∧ Fun 𝐺) ∧ 𝑓𝐺))
21 3anrot 1060 . . . . 5 ((∅ ∈ dom 𝑓 ∧ Fun 𝐺𝑓𝐺) ↔ (Fun 𝐺𝑓𝐺 ∧ ∅ ∈ dom 𝑓))
22 ancom 465 . . . . 5 (((∅ ∈ dom 𝑓 ∧ Fun 𝐺) ∧ 𝑓𝐺) ↔ (𝑓𝐺 ∧ (∅ ∈ dom 𝑓 ∧ Fun 𝐺)))
2320, 21, 223bitr3i 290 . . . 4 ((Fun 𝐺𝑓𝐺 ∧ ∅ ∈ dom 𝑓) ↔ (𝑓𝐺 ∧ (∅ ∈ dom 𝑓 ∧ Fun 𝐺)))
2419, 23sylibr 224 . . 3 ((𝑅 FrSe 𝐴𝜏𝜎) → (Fun 𝐺𝑓𝐺 ∧ ∅ ∈ dom 𝑓))
25 funssfv 6247 . . 3 ((Fun 𝐺𝑓𝐺 ∧ ∅ ∈ dom 𝑓) → (𝐺‘∅) = (𝑓‘∅))
2624, 25syl 17 . 2 ((𝑅 FrSe 𝐴𝜏𝜎) → (𝐺‘∅) = (𝑓‘∅))
271simp2bi 1097 . . 3 (𝜏𝜑′)
28273ad2ant2 1103 . 2 ((𝑅 FrSe 𝐴𝜏𝜎) → 𝜑′)
29 bnj545.1 . . . 4 (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
30 eqtr 2670 . . . 4 (((𝐺‘∅) = (𝑓‘∅) ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) → (𝐺‘∅) = pred(𝑥, 𝐴, 𝑅))
3129, 30sylan2b 491 . . 3 (((𝐺‘∅) = (𝑓‘∅) ∧ 𝜑′) → (𝐺‘∅) = pred(𝑥, 𝐴, 𝑅))
32 bnj545.7 . . 3 (𝜑″ ↔ (𝐺‘∅) = pred(𝑥, 𝐴, 𝑅))
3331, 32sylibr 224 . 2 (((𝐺‘∅) = (𝑓‘∅) ∧ 𝜑′) → 𝜑″)
3426, 28, 33syl2anc 694 1 ((𝑅 FrSe 𝐴𝜏𝜎) → 𝜑″)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  cdif 3604  cun 3605  wss 3607  c0 3948  {csn 4210  cop 4216   ciun 4552  dom cdm 5143  suc csuc 5763  Fun wfun 5920   Fn wfn 5921  cfv 5926  ωcom 7107   predc-bnj14 30882   FrSe w-bnj15 30886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-res 5155  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-fv 5934  df-om 7108
This theorem is referenced by:  bnj600  31115  bnj908  31127
  Copyright terms: Public domain W3C validator