Mathbox for Jonathan Ben-Naim < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj539 Structured version   Visualization version   GIF version

Theorem bnj539 31087
 Description: Technical lemma for bnj852 31117. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj539.1 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj539.2 (𝜓′[𝑀 / 𝑛]𝜓)
bnj539.3 𝑀 ∈ V
Assertion
Ref Expression
bnj539 (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖𝑀 → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅)))
Distinct variable groups:   𝐴,𝑛   𝑛,𝐹   𝑖,𝑀   𝑅,𝑛   𝑖,𝑛   𝑦,𝑛
Allowed substitution hints:   𝜓(𝑦,𝑖,𝑛)   𝐴(𝑦,𝑖)   𝑅(𝑦,𝑖)   𝐹(𝑦,𝑖)   𝑀(𝑦,𝑛)   𝜓′(𝑦,𝑖,𝑛)

Proof of Theorem bnj539
StepHypRef Expression
1 bnj539.2 . 2 (𝜓′[𝑀 / 𝑛]𝜓)
2 bnj539.1 . . . 4 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅)))
32sbcbii 3524 . . 3 ([𝑀 / 𝑛]𝜓[𝑀 / 𝑛]𝑖 ∈ ω (suc 𝑖𝑛 → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅)))
4 bnj539.3 . . . . 5 𝑀 ∈ V
54bnj538 30935 . . . 4 ([𝑀 / 𝑛]𝑖 ∈ ω (suc 𝑖𝑛 → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ ∀𝑖 ∈ ω [𝑀 / 𝑛](suc 𝑖𝑛 → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅)))
6 sbcimg 3510 . . . . . . 7 (𝑀 ∈ V → ([𝑀 / 𝑛](suc 𝑖𝑛 → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ ([𝑀 / 𝑛]suc 𝑖𝑛[𝑀 / 𝑛](𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅))))
74, 6ax-mp 5 . . . . . 6 ([𝑀 / 𝑛](suc 𝑖𝑛 → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ ([𝑀 / 𝑛]suc 𝑖𝑛[𝑀 / 𝑛](𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅)))
8 sbcel2gv 3529 . . . . . . . 8 (𝑀 ∈ V → ([𝑀 / 𝑛]suc 𝑖𝑛 ↔ suc 𝑖𝑀))
94, 8ax-mp 5 . . . . . . 7 ([𝑀 / 𝑛]suc 𝑖𝑛 ↔ suc 𝑖𝑀)
104bnj525 30933 . . . . . . 7 ([𝑀 / 𝑛](𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅) ↔ (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅))
119, 10imbi12i 339 . . . . . 6 (([𝑀 / 𝑛]suc 𝑖𝑛[𝑀 / 𝑛](𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ (suc 𝑖𝑀 → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅)))
127, 11bitri 264 . . . . 5 ([𝑀 / 𝑛](suc 𝑖𝑛 → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ (suc 𝑖𝑀 → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅)))
1312ralbii 3009 . . . 4 (∀𝑖 ∈ ω [𝑀 / 𝑛](suc 𝑖𝑛 → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ ∀𝑖 ∈ ω (suc 𝑖𝑀 → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅)))
145, 13bitri 264 . . 3 ([𝑀 / 𝑛]𝑖 ∈ ω (suc 𝑖𝑛 → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ ∀𝑖 ∈ ω (suc 𝑖𝑀 → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅)))
153, 14bitri 264 . 2 ([𝑀 / 𝑛]𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑀 → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅)))
161, 15bitri 264 1 (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖𝑀 → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   = wceq 1523   ∈ wcel 2030  ∀wral 2941  Vcvv 3231  [wsbc 3468  ∪ ciun 4552  suc csuc 5763  ‘cfv 5926  ωcom 7107   predc-bnj14 30882 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-v 3233  df-sbc 3469 This theorem is referenced by:  bnj600  31115  bnj908  31127  bnj964  31139  bnj999  31153
 Copyright terms: Public domain W3C validator