![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj538OLD | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) Obsolete version of bnj538 30935 as of 30-Mar-2020. (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj538OLD.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
bnj538OLD | ⊢ ([𝐴 / 𝑦]∀𝑥 ∈ 𝐵 𝜑 ↔ ∀𝑥 ∈ 𝐵 [𝐴 / 𝑦]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 2946 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝜑)) | |
2 | 1 | sbcbii 3524 | . 2 ⊢ ([𝐴 / 𝑦]∀𝑥 ∈ 𝐵 𝜑 ↔ [𝐴 / 𝑦]∀𝑥(𝑥 ∈ 𝐵 → 𝜑)) |
3 | bnj538OLD.1 | . . . . . 6 ⊢ 𝐴 ∈ V | |
4 | sbcimg 3510 | . . . . . 6 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑦](𝑥 ∈ 𝐵 → 𝜑) ↔ ([𝐴 / 𝑦]𝑥 ∈ 𝐵 → [𝐴 / 𝑦]𝜑))) | |
5 | 3, 4 | ax-mp 5 | . . . . 5 ⊢ ([𝐴 / 𝑦](𝑥 ∈ 𝐵 → 𝜑) ↔ ([𝐴 / 𝑦]𝑥 ∈ 𝐵 → [𝐴 / 𝑦]𝜑)) |
6 | 3 | bnj525 30933 | . . . . . 6 ⊢ ([𝐴 / 𝑦]𝑥 ∈ 𝐵 ↔ 𝑥 ∈ 𝐵) |
7 | 6 | imbi1i 338 | . . . . 5 ⊢ (([𝐴 / 𝑦]𝑥 ∈ 𝐵 → [𝐴 / 𝑦]𝜑) ↔ (𝑥 ∈ 𝐵 → [𝐴 / 𝑦]𝜑)) |
8 | 5, 7 | bitri 264 | . . . 4 ⊢ ([𝐴 / 𝑦](𝑥 ∈ 𝐵 → 𝜑) ↔ (𝑥 ∈ 𝐵 → [𝐴 / 𝑦]𝜑)) |
9 | 8 | albii 1787 | . . 3 ⊢ (∀𝑥[𝐴 / 𝑦](𝑥 ∈ 𝐵 → 𝜑) ↔ ∀𝑥(𝑥 ∈ 𝐵 → [𝐴 / 𝑦]𝜑)) |
10 | sbcal 3518 | . . 3 ⊢ ([𝐴 / 𝑦]∀𝑥(𝑥 ∈ 𝐵 → 𝜑) ↔ ∀𝑥[𝐴 / 𝑦](𝑥 ∈ 𝐵 → 𝜑)) | |
11 | df-ral 2946 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 [𝐴 / 𝑦]𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐵 → [𝐴 / 𝑦]𝜑)) | |
12 | 9, 10, 11 | 3bitr4i 292 | . 2 ⊢ ([𝐴 / 𝑦]∀𝑥(𝑥 ∈ 𝐵 → 𝜑) ↔ ∀𝑥 ∈ 𝐵 [𝐴 / 𝑦]𝜑) |
13 | 2, 12 | bitri 264 | 1 ⊢ ([𝐴 / 𝑦]∀𝑥 ∈ 𝐵 𝜑 ↔ ∀𝑥 ∈ 𝐵 [𝐴 / 𝑦]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∀wal 1521 ∈ wcel 2030 ∀wral 2941 Vcvv 3231 [wsbc 3468 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-ral 2946 df-v 3233 df-sbc 3469 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |