![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj538 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) (Proof shortened by OpenAI, 30-Mar-2020.) |
Ref | Expression |
---|---|
bnj538.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
bnj538 | ⊢ ([𝐴 / 𝑦]∀𝑥 ∈ 𝐵 𝜑 ↔ ∀𝑥 ∈ 𝐵 [𝐴 / 𝑦]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj538.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | sbcralg 3652 | . 2 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑦]∀𝑥 ∈ 𝐵 𝜑 ↔ ∀𝑥 ∈ 𝐵 [𝐴 / 𝑦]𝜑)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ([𝐴 / 𝑦]∀𝑥 ∈ 𝐵 𝜑 ↔ ∀𝑥 ∈ 𝐵 [𝐴 / 𝑦]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∈ wcel 2137 ∀wral 3048 Vcvv 3338 [wsbc 3574 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1986 ax-6 2052 ax-7 2088 ax-9 2146 ax-10 2166 ax-11 2181 ax-12 2194 ax-13 2389 ax-ext 2738 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2045 df-clab 2745 df-cleq 2751 df-clel 2754 df-nfc 2889 df-ral 3053 df-v 3340 df-sbc 3575 |
This theorem is referenced by: bnj92 31237 bnj539 31266 bnj540 31267 |
Copyright terms: Public domain | W3C validator |