![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj213 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj213 | ⊢ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bnj14 31064 | . 2 ⊢ pred(𝑋, 𝐴, 𝑅) = {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑋} | |
2 | 1 | ssrab3 3829 | 1 ⊢ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3715 class class class wbr 4804 predc-bnj14 31063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-rab 3059 df-in 3722 df-ss 3729 df-bnj14 31064 |
This theorem is referenced by: bnj229 31261 bnj517 31262 bnj1128 31365 bnj1145 31368 bnj1137 31370 bnj1408 31411 bnj1417 31416 bnj1523 31446 |
Copyright terms: Public domain | W3C validator |