![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj156 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj156.1 | ⊢ (𝜁0 ↔ (𝑓 Fn 1𝑜 ∧ 𝜑′ ∧ 𝜓′)) |
bnj156.2 | ⊢ (𝜁1 ↔ [𝑔 / 𝑓]𝜁0) |
bnj156.3 | ⊢ (𝜑1 ↔ [𝑔 / 𝑓]𝜑′) |
bnj156.4 | ⊢ (𝜓1 ↔ [𝑔 / 𝑓]𝜓′) |
Ref | Expression |
---|---|
bnj156 | ⊢ (𝜁1 ↔ (𝑔 Fn 1𝑜 ∧ 𝜑1 ∧ 𝜓1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj156.2 | . 2 ⊢ (𝜁1 ↔ [𝑔 / 𝑓]𝜁0) | |
2 | bnj156.1 | . . . 4 ⊢ (𝜁0 ↔ (𝑓 Fn 1𝑜 ∧ 𝜑′ ∧ 𝜓′)) | |
3 | 2 | sbcbii 3597 | . . 3 ⊢ ([𝑔 / 𝑓]𝜁0 ↔ [𝑔 / 𝑓](𝑓 Fn 1𝑜 ∧ 𝜑′ ∧ 𝜓′)) |
4 | sbc3an 3600 | . . . 4 ⊢ ([𝑔 / 𝑓](𝑓 Fn 1𝑜 ∧ 𝜑′ ∧ 𝜓′) ↔ ([𝑔 / 𝑓]𝑓 Fn 1𝑜 ∧ [𝑔 / 𝑓]𝜑′ ∧ [𝑔 / 𝑓]𝜓′)) | |
5 | bnj62 31016 | . . . . 5 ⊢ ([𝑔 / 𝑓]𝑓 Fn 1𝑜 ↔ 𝑔 Fn 1𝑜) | |
6 | bnj156.3 | . . . . . 6 ⊢ (𝜑1 ↔ [𝑔 / 𝑓]𝜑′) | |
7 | 6 | bicomi 214 | . . . . 5 ⊢ ([𝑔 / 𝑓]𝜑′ ↔ 𝜑1) |
8 | bnj156.4 | . . . . . 6 ⊢ (𝜓1 ↔ [𝑔 / 𝑓]𝜓′) | |
9 | 8 | bicomi 214 | . . . . 5 ⊢ ([𝑔 / 𝑓]𝜓′ ↔ 𝜓1) |
10 | 5, 7, 9 | 3anbi123i 1388 | . . . 4 ⊢ (([𝑔 / 𝑓]𝑓 Fn 1𝑜 ∧ [𝑔 / 𝑓]𝜑′ ∧ [𝑔 / 𝑓]𝜓′) ↔ (𝑔 Fn 1𝑜 ∧ 𝜑1 ∧ 𝜓1)) |
11 | 4, 10 | bitri 264 | . . 3 ⊢ ([𝑔 / 𝑓](𝑓 Fn 1𝑜 ∧ 𝜑′ ∧ 𝜓′) ↔ (𝑔 Fn 1𝑜 ∧ 𝜑1 ∧ 𝜓1)) |
12 | 3, 11 | bitri 264 | . 2 ⊢ ([𝑔 / 𝑓]𝜁0 ↔ (𝑔 Fn 1𝑜 ∧ 𝜑1 ∧ 𝜓1)) |
13 | 1, 12 | bitri 264 | 1 ⊢ (𝜁1 ↔ (𝑔 Fn 1𝑜 ∧ 𝜑1 ∧ 𝜓1)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ w3a 1072 [wsbc 3541 Fn wfn 5996 1𝑜c1o 7673 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-rab 3023 df-v 3306 df-sbc 3542 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-nul 4024 df-if 4195 df-sn 4286 df-pr 4288 df-op 4292 df-br 4761 df-opab 4821 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-fun 6003 df-fn 6004 |
This theorem is referenced by: bnj153 31178 |
Copyright terms: Public domain | W3C validator |