![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1520 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj1500 31435. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1520.1 | ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} |
bnj1520.2 | ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
bnj1520.3 | ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
bnj1520.4 | ⊢ 𝐹 = ∪ 𝐶 |
Ref | Expression |
---|---|
bnj1520 | ⊢ ((𝐹‘𝑥) = (𝐺‘〈𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))〉) → ∀𝑓(𝐹‘𝑥) = (𝐺‘〈𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1520.4 | . . . . 5 ⊢ 𝐹 = ∪ 𝐶 | |
2 | bnj1520.3 | . . . . . . . 8 ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} | |
3 | 2 | bnj1317 31191 | . . . . . . 7 ⊢ (𝑤 ∈ 𝐶 → ∀𝑓 𝑤 ∈ 𝐶) |
4 | 3 | nfcii 2885 | . . . . . 6 ⊢ Ⅎ𝑓𝐶 |
5 | 4 | nfuni 4586 | . . . . 5 ⊢ Ⅎ𝑓∪ 𝐶 |
6 | 1, 5 | nfcxfr 2892 | . . . 4 ⊢ Ⅎ𝑓𝐹 |
7 | nfcv 2894 | . . . 4 ⊢ Ⅎ𝑓𝑥 | |
8 | 6, 7 | nffv 6351 | . . 3 ⊢ Ⅎ𝑓(𝐹‘𝑥) |
9 | nfcv 2894 | . . . 4 ⊢ Ⅎ𝑓𝐺 | |
10 | nfcv 2894 | . . . . . 6 ⊢ Ⅎ𝑓 pred(𝑥, 𝐴, 𝑅) | |
11 | 6, 10 | nfres 5545 | . . . . 5 ⊢ Ⅎ𝑓(𝐹 ↾ pred(𝑥, 𝐴, 𝑅)) |
12 | 7, 11 | nfop 4561 | . . . 4 ⊢ Ⅎ𝑓〈𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
13 | 9, 12 | nffv 6351 | . . 3 ⊢ Ⅎ𝑓(𝐺‘〈𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))〉) |
14 | 8, 13 | nfeq 2906 | . 2 ⊢ Ⅎ𝑓(𝐹‘𝑥) = (𝐺‘〈𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))〉) |
15 | 14 | nf5ri 2204 | 1 ⊢ ((𝐹‘𝑥) = (𝐺‘〈𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))〉) → ∀𝑓(𝐹‘𝑥) = (𝐺‘〈𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))〉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∀wal 1622 = wceq 1624 {cab 2738 ∀wral 3042 ∃wrex 3043 ⊆ wss 3707 〈cop 4319 ∪ cuni 4580 ↾ cres 5260 Fn wfn 6036 ‘cfv 6041 predc-bnj14 31055 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ral 3047 df-rex 3048 df-rab 3051 df-v 3334 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-nul 4051 df-if 4223 df-sn 4314 df-pr 4316 df-op 4320 df-uni 4581 df-br 4797 df-opab 4857 df-xp 5264 df-res 5270 df-iota 6004 df-fv 6049 |
This theorem is referenced by: bnj1501 31434 |
Copyright terms: Public domain | W3C validator |