![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1519 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj1500 31443. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1519.1 | ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} |
bnj1519.2 | ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
bnj1519.3 | ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
bnj1519.4 | ⊢ 𝐹 = ∪ 𝐶 |
Ref | Expression |
---|---|
bnj1519 | ⊢ ((𝐹‘𝑥) = (𝐺‘〈𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))〉) → ∀𝑑(𝐹‘𝑥) = (𝐺‘〈𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1519.4 | . . . . 5 ⊢ 𝐹 = ∪ 𝐶 | |
2 | bnj1519.3 | . . . . . . 7 ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} | |
3 | nfre1 3143 | . . . . . . . 8 ⊢ Ⅎ𝑑∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌)) | |
4 | 3 | nfab 2907 | . . . . . . 7 ⊢ Ⅎ𝑑{𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
5 | 2, 4 | nfcxfr 2900 | . . . . . 6 ⊢ Ⅎ𝑑𝐶 |
6 | 5 | nfuni 4594 | . . . . 5 ⊢ Ⅎ𝑑∪ 𝐶 |
7 | 1, 6 | nfcxfr 2900 | . . . 4 ⊢ Ⅎ𝑑𝐹 |
8 | nfcv 2902 | . . . 4 ⊢ Ⅎ𝑑𝑥 | |
9 | 7, 8 | nffv 6359 | . . 3 ⊢ Ⅎ𝑑(𝐹‘𝑥) |
10 | nfcv 2902 | . . . 4 ⊢ Ⅎ𝑑𝐺 | |
11 | nfcv 2902 | . . . . . 6 ⊢ Ⅎ𝑑 pred(𝑥, 𝐴, 𝑅) | |
12 | 7, 11 | nfres 5553 | . . . . 5 ⊢ Ⅎ𝑑(𝐹 ↾ pred(𝑥, 𝐴, 𝑅)) |
13 | 8, 12 | nfop 4569 | . . . 4 ⊢ Ⅎ𝑑〈𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
14 | 10, 13 | nffv 6359 | . . 3 ⊢ Ⅎ𝑑(𝐺‘〈𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))〉) |
15 | 9, 14 | nfeq 2914 | . 2 ⊢ Ⅎ𝑑(𝐹‘𝑥) = (𝐺‘〈𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))〉) |
16 | 15 | nf5ri 2212 | 1 ⊢ ((𝐹‘𝑥) = (𝐺‘〈𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))〉) → ∀𝑑(𝐹‘𝑥) = (𝐺‘〈𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))〉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∀wal 1630 = wceq 1632 {cab 2746 ∀wral 3050 ∃wrex 3051 ⊆ wss 3715 〈cop 4327 ∪ cuni 4588 ↾ cres 5268 Fn wfn 6044 ‘cfv 6049 predc-bnj14 31063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-xp 5272 df-res 5278 df-iota 6012 df-fv 6057 |
This theorem is referenced by: bnj1501 31442 |
Copyright terms: Public domain | W3C validator |