Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1476 Structured version   Visualization version   GIF version

Theorem bnj1476 31145
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1476.1 𝐷 = {𝑥𝐴 ∣ ¬ 𝜑}
bnj1476.2 (𝜓𝐷 = ∅)
Assertion
Ref Expression
bnj1476 (𝜓 → ∀𝑥𝐴 𝜑)

Proof of Theorem bnj1476
StepHypRef Expression
1 bnj1476.2 . . . 4 (𝜓𝐷 = ∅)
2 bnj1476.1 . . . . . 6 𝐷 = {𝑥𝐴 ∣ ¬ 𝜑}
3 nfrab1 3225 . . . . . 6 𝑥{𝑥𝐴 ∣ ¬ 𝜑}
42, 3nfcxfr 2864 . . . . 5 𝑥𝐷
54eq0f 4033 . . . 4 (𝐷 = ∅ ↔ ∀𝑥 ¬ 𝑥𝐷)
61, 5sylib 208 . . 3 (𝜓 → ∀𝑥 ¬ 𝑥𝐷)
72rabeq2i 3301 . . . . 5 (𝑥𝐷 ↔ (𝑥𝐴 ∧ ¬ 𝜑))
87notbii 309 . . . 4 𝑥𝐷 ↔ ¬ (𝑥𝐴 ∧ ¬ 𝜑))
9 iman 439 . . . 4 ((𝑥𝐴𝜑) ↔ ¬ (𝑥𝐴 ∧ ¬ 𝜑))
108, 9sylbb2 228 . . 3 𝑥𝐷 → (𝑥𝐴𝜑))
116, 10sylg 1863 . 2 (𝜓 → ∀𝑥(𝑥𝐴𝜑))
1211bnj1142 31088 1 (𝜓 → ∀𝑥𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  wal 1594   = wceq 1596  wcel 2103  wral 3014  {crab 3018  c0 4023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ral 3019  df-rab 3023  df-v 3306  df-dif 3683  df-nul 4024
This theorem is referenced by:  bnj1312  31354
  Copyright terms: Public domain W3C validator