Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1466 Structured version   Visualization version   GIF version

Theorem bnj1466 30882
Description: Technical lemma for bnj60 30891. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1466.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj1466.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1466.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
bnj1466.4 (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
bnj1466.5 𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}
bnj1466.6 (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))
bnj1466.7 (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))
bnj1466.8 (𝜏′[𝑦 / 𝑥]𝜏)
bnj1466.9 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}
bnj1466.10 𝑃 = 𝐻
bnj1466.11 𝑍 = ⟨𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1466.12 𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})
Assertion
Ref Expression
bnj1466 (𝑤𝑄 → ∀𝑓 𝑤𝑄)
Distinct variable groups:   𝐴,𝑓,𝑤   𝑓,𝐺,𝑤   𝑤,𝐻   𝑤,𝑃   𝑅,𝑓,𝑤   𝑤,𝑍   𝑥,𝑓,𝑤
Allowed substitution hints:   𝜓(𝑥,𝑦,𝑤,𝑓,𝑑)   𝜒(𝑥,𝑦,𝑤,𝑓,𝑑)   𝜏(𝑥,𝑦,𝑤,𝑓,𝑑)   𝐴(𝑥,𝑦,𝑑)   𝐵(𝑥,𝑦,𝑤,𝑓,𝑑)   𝐶(𝑥,𝑦,𝑤,𝑓,𝑑)   𝐷(𝑥,𝑦,𝑤,𝑓,𝑑)   𝑃(𝑥,𝑦,𝑓,𝑑)   𝑄(𝑥,𝑦,𝑤,𝑓,𝑑)   𝑅(𝑥,𝑦,𝑑)   𝐺(𝑥,𝑦,𝑑)   𝐻(𝑥,𝑦,𝑓,𝑑)   𝑌(𝑥,𝑦,𝑤,𝑓,𝑑)   𝑍(𝑥,𝑦,𝑓,𝑑)   𝜏′(𝑥,𝑦,𝑤,𝑓,𝑑)

Proof of Theorem bnj1466
StepHypRef Expression
1 bnj1466.12 . . 3 𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})
2 bnj1466.10 . . . . 5 𝑃 = 𝐻
3 bnj1466.9 . . . . . . . 8 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}
43bnj1317 30653 . . . . . . 7 (𝑤𝐻 → ∀𝑓 𝑤𝐻)
54nfcii 2752 . . . . . 6 𝑓𝐻
65nfuni 4415 . . . . 5 𝑓 𝐻
72, 6nfcxfr 2759 . . . 4 𝑓𝑃
8 nfcv 2761 . . . . . 6 𝑓𝑥
9 nfcv 2761 . . . . . . 7 𝑓𝐺
10 bnj1466.11 . . . . . . . 8 𝑍 = ⟨𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩
11 nfcv 2761 . . . . . . . . . 10 𝑓 pred(𝑥, 𝐴, 𝑅)
127, 11nfres 5368 . . . . . . . . 9 𝑓(𝑃 ↾ pred(𝑥, 𝐴, 𝑅))
138, 12nfop 4393 . . . . . . . 8 𝑓𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩
1410, 13nfcxfr 2759 . . . . . . 7 𝑓𝑍
159, 14nffv 6165 . . . . . 6 𝑓(𝐺𝑍)
168, 15nfop 4393 . . . . 5 𝑓𝑥, (𝐺𝑍)⟩
1716nfsn 4220 . . . 4 𝑓{⟨𝑥, (𝐺𝑍)⟩}
187, 17nfun 3753 . . 3 𝑓(𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})
191, 18nfcxfr 2759 . 2 𝑓𝑄
2019nfcrii 2754 1 (𝑤𝑄 → ∀𝑓 𝑤𝑄)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1036  wal 1478   = wceq 1480  wex 1701  wcel 1987  {cab 2607  wne 2790  wral 2908  wrex 2909  {crab 2912  [wsbc 3422  cun 3558  wss 3560  c0 3897  {csn 4155  cop 4161   cuni 4409   class class class wbr 4623  dom cdm 5084  cres 5086   Fn wfn 5852  cfv 5857   predc-bnj14 30514   FrSe w-bnj15 30518   trClc-bnj18 30520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2913  df-rex 2914  df-rab 2917  df-v 3192  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-sn 4156  df-pr 4158  df-op 4162  df-uni 4410  df-br 4624  df-opab 4684  df-xp 5090  df-res 5096  df-iota 5820  df-fv 5865
This theorem is referenced by:  bnj1463  30884  bnj1491  30886
  Copyright terms: Public domain W3C validator