Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1447 Structured version   Visualization version   GIF version

Theorem bnj1447 31442
Description: Technical lemma for bnj60 31458. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1447.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj1447.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1447.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
bnj1447.4 (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
bnj1447.5 𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}
bnj1447.6 (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))
bnj1447.7 (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))
bnj1447.8 (𝜏′[𝑦 / 𝑥]𝜏)
bnj1447.9 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}
bnj1447.10 𝑃 = 𝐻
bnj1447.11 𝑍 = ⟨𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1447.12 𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})
bnj1447.13 𝑊 = ⟨𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))⟩
Assertion
Ref Expression
bnj1447 ((𝑄𝑧) = (𝐺𝑊) → ∀𝑦(𝑄𝑧) = (𝐺𝑊))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐺   𝑦,𝑅   𝑥,𝑦   𝑦,𝑧
Allowed substitution hints:   𝜓(𝑥,𝑦,𝑧,𝑓,𝑑)   𝜒(𝑥,𝑦,𝑧,𝑓,𝑑)   𝜏(𝑥,𝑦,𝑧,𝑓,𝑑)   𝐴(𝑥,𝑧,𝑓,𝑑)   𝐵(𝑥,𝑦,𝑧,𝑓,𝑑)   𝐶(𝑥,𝑦,𝑧,𝑓,𝑑)   𝐷(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑃(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑄(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑅(𝑥,𝑧,𝑓,𝑑)   𝐺(𝑥,𝑧,𝑓,𝑑)   𝐻(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑊(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑌(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑍(𝑥,𝑦,𝑧,𝑓,𝑑)   𝜏′(𝑥,𝑦,𝑧,𝑓,𝑑)

Proof of Theorem bnj1447
StepHypRef Expression
1 bnj1447.12 . . . . 5 𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})
2 bnj1447.10 . . . . . . 7 𝑃 = 𝐻
3 bnj1447.9 . . . . . . . . 9 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}
4 nfre1 3143 . . . . . . . . . 10 𝑦𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′
54nfab 2907 . . . . . . . . 9 𝑦{𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}
63, 5nfcxfr 2900 . . . . . . . 8 𝑦𝐻
76nfuni 4594 . . . . . . 7 𝑦 𝐻
82, 7nfcxfr 2900 . . . . . 6 𝑦𝑃
9 nfcv 2902 . . . . . . . 8 𝑦𝑥
10 nfcv 2902 . . . . . . . . 9 𝑦𝐺
11 bnj1447.11 . . . . . . . . . 10 𝑍 = ⟨𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩
12 nfcv 2902 . . . . . . . . . . . 12 𝑦 pred(𝑥, 𝐴, 𝑅)
138, 12nfres 5553 . . . . . . . . . . 11 𝑦(𝑃 ↾ pred(𝑥, 𝐴, 𝑅))
149, 13nfop 4569 . . . . . . . . . 10 𝑦𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩
1511, 14nfcxfr 2900 . . . . . . . . 9 𝑦𝑍
1610, 15nffv 6360 . . . . . . . 8 𝑦(𝐺𝑍)
179, 16nfop 4569 . . . . . . 7 𝑦𝑥, (𝐺𝑍)⟩
1817nfsn 4386 . . . . . 6 𝑦{⟨𝑥, (𝐺𝑍)⟩}
198, 18nfun 3912 . . . . 5 𝑦(𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})
201, 19nfcxfr 2900 . . . 4 𝑦𝑄
21 nfcv 2902 . . . 4 𝑦𝑧
2220, 21nffv 6360 . . 3 𝑦(𝑄𝑧)
23 bnj1447.13 . . . . 5 𝑊 = ⟨𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))⟩
24 nfcv 2902 . . . . . . 7 𝑦 pred(𝑧, 𝐴, 𝑅)
2520, 24nfres 5553 . . . . . 6 𝑦(𝑄 ↾ pred(𝑧, 𝐴, 𝑅))
2621, 25nfop 4569 . . . . 5 𝑦𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))⟩
2723, 26nfcxfr 2900 . . . 4 𝑦𝑊
2810, 27nffv 6360 . . 3 𝑦(𝐺𝑊)
2922, 28nfeq 2914 . 2 𝑦(𝑄𝑧) = (𝐺𝑊)
3029nf5ri 2212 1 ((𝑄𝑧) = (𝐺𝑊) → ∀𝑦(𝑄𝑧) = (𝐺𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1072  wal 1630   = wceq 1632  wex 1853  wcel 2139  {cab 2746  wne 2932  wral 3050  wrex 3051  {crab 3054  [wsbc 3576  cun 3713  wss 3715  c0 4058  {csn 4321  cop 4327   cuni 4588   class class class wbr 4804  dom cdm 5266  cres 5268   Fn wfn 6044  cfv 6049   predc-bnj14 31084   FrSe w-bnj15 31088   trClc-bnj18 31090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-xp 5272  df-res 5278  df-iota 6012  df-fv 6057
This theorem is referenced by:  bnj1450  31446
  Copyright terms: Public domain W3C validator