![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1421 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj60 31256. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1421.1 | ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} |
bnj1421.2 | ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
bnj1421.3 | ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
bnj1421.4 | ⊢ (𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) |
bnj1421.5 | ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏} |
bnj1421.6 | ⊢ (𝜓 ↔ (𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅)) |
bnj1421.7 | ⊢ (𝜒 ↔ (𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥)) |
bnj1421.8 | ⊢ (𝜏′ ↔ [𝑦 / 𝑥]𝜏) |
bnj1421.9 | ⊢ 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′} |
bnj1421.10 | ⊢ 𝑃 = ∪ 𝐻 |
bnj1421.11 | ⊢ 𝑍 = 〈𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
bnj1421.12 | ⊢ 𝑄 = (𝑃 ∪ {〈𝑥, (𝐺‘𝑍)〉}) |
bnj1421.13 | ⊢ (𝜒 → Fun 𝑃) |
bnj1421.14 | ⊢ (𝜒 → dom 𝑄 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) |
bnj1421.15 | ⊢ (𝜒 → dom 𝑃 = trCl(𝑥, 𝐴, 𝑅)) |
Ref | Expression |
---|---|
bnj1421 | ⊢ (𝜒 → Fun 𝑄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1421.13 | . . . 4 ⊢ (𝜒 → Fun 𝑃) | |
2 | vex 3234 | . . . . 5 ⊢ 𝑥 ∈ V | |
3 | fvex 6239 | . . . . 5 ⊢ (𝐺‘𝑍) ∈ V | |
4 | 2, 3 | funsn 5977 | . . . 4 ⊢ Fun {〈𝑥, (𝐺‘𝑍)〉} |
5 | 1, 4 | jctir 560 | . . 3 ⊢ (𝜒 → (Fun 𝑃 ∧ Fun {〈𝑥, (𝐺‘𝑍)〉})) |
6 | bnj1421.15 | . . . . 5 ⊢ (𝜒 → dom 𝑃 = trCl(𝑥, 𝐴, 𝑅)) | |
7 | 3 | dmsnop 5645 | . . . . . 6 ⊢ dom {〈𝑥, (𝐺‘𝑍)〉} = {𝑥} |
8 | 7 | a1i 11 | . . . . 5 ⊢ (𝜒 → dom {〈𝑥, (𝐺‘𝑍)〉} = {𝑥}) |
9 | 6, 8 | ineq12d 3848 | . . . 4 ⊢ (𝜒 → (dom 𝑃 ∩ dom {〈𝑥, (𝐺‘𝑍)〉}) = ( trCl(𝑥, 𝐴, 𝑅) ∩ {𝑥})) |
10 | bnj1421.7 | . . . . . . 7 ⊢ (𝜒 ↔ (𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥)) | |
11 | bnj1421.6 | . . . . . . . 8 ⊢ (𝜓 ↔ (𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅)) | |
12 | 11 | simplbi 475 | . . . . . . 7 ⊢ (𝜓 → 𝑅 FrSe 𝐴) |
13 | 10, 12 | bnj835 30955 | . . . . . 6 ⊢ (𝜒 → 𝑅 FrSe 𝐴) |
14 | biid 251 | . . . . . . . 8 ⊢ (𝑅 FrSe 𝐴 ↔ 𝑅 FrSe 𝐴) | |
15 | biid 251 | . . . . . . . 8 ⊢ (¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅) ↔ ¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅)) | |
16 | biid 251 | . . . . . . . 8 ⊢ (∀𝑧 ∈ 𝐴 (𝑧𝑅𝑥 → [𝑧 / 𝑥] ¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅)) ↔ ∀𝑧 ∈ 𝐴 (𝑧𝑅𝑥 → [𝑧 / 𝑥] ¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅))) | |
17 | biid 251 | . . . . . . . 8 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ∧ ∀𝑧 ∈ 𝐴 (𝑧𝑅𝑥 → [𝑧 / 𝑥] ¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅))) ↔ (𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ∧ ∀𝑧 ∈ 𝐴 (𝑧𝑅𝑥 → [𝑧 / 𝑥] ¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅)))) | |
18 | eqid 2651 | . . . . . . . 8 ⊢ ( pred(𝑥, 𝐴, 𝑅) ∪ ∪ 𝑧 ∈ pred (𝑥, 𝐴, 𝑅) trCl(𝑧, 𝐴, 𝑅)) = ( pred(𝑥, 𝐴, 𝑅) ∪ ∪ 𝑧 ∈ pred (𝑥, 𝐴, 𝑅) trCl(𝑧, 𝐴, 𝑅)) | |
19 | 14, 15, 16, 17, 18 | bnj1417 31235 | . . . . . . 7 ⊢ (𝑅 FrSe 𝐴 → ∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅)) |
20 | disjsn 4278 | . . . . . . . 8 ⊢ (( trCl(𝑥, 𝐴, 𝑅) ∩ {𝑥}) = ∅ ↔ ¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅)) | |
21 | 20 | ralbii 3009 | . . . . . . 7 ⊢ (∀𝑥 ∈ 𝐴 ( trCl(𝑥, 𝐴, 𝑅) ∩ {𝑥}) = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅)) |
22 | 19, 21 | sylibr 224 | . . . . . 6 ⊢ (𝑅 FrSe 𝐴 → ∀𝑥 ∈ 𝐴 ( trCl(𝑥, 𝐴, 𝑅) ∩ {𝑥}) = ∅) |
23 | 13, 22 | syl 17 | . . . . 5 ⊢ (𝜒 → ∀𝑥 ∈ 𝐴 ( trCl(𝑥, 𝐴, 𝑅) ∩ {𝑥}) = ∅) |
24 | bnj1421.5 | . . . . . 6 ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏} | |
25 | 24, 10 | bnj1212 30996 | . . . . 5 ⊢ (𝜒 → 𝑥 ∈ 𝐴) |
26 | 23, 25 | bnj1294 31014 | . . . 4 ⊢ (𝜒 → ( trCl(𝑥, 𝐴, 𝑅) ∩ {𝑥}) = ∅) |
27 | 9, 26 | eqtrd 2685 | . . 3 ⊢ (𝜒 → (dom 𝑃 ∩ dom {〈𝑥, (𝐺‘𝑍)〉}) = ∅) |
28 | funun 5970 | . . 3 ⊢ (((Fun 𝑃 ∧ Fun {〈𝑥, (𝐺‘𝑍)〉}) ∧ (dom 𝑃 ∩ dom {〈𝑥, (𝐺‘𝑍)〉}) = ∅) → Fun (𝑃 ∪ {〈𝑥, (𝐺‘𝑍)〉})) | |
29 | 5, 27, 28 | syl2anc 694 | . 2 ⊢ (𝜒 → Fun (𝑃 ∪ {〈𝑥, (𝐺‘𝑍)〉})) |
30 | bnj1421.12 | . . 3 ⊢ 𝑄 = (𝑃 ∪ {〈𝑥, (𝐺‘𝑍)〉}) | |
31 | 30 | funeqi 5947 | . 2 ⊢ (Fun 𝑄 ↔ Fun (𝑃 ∪ {〈𝑥, (𝐺‘𝑍)〉})) |
32 | 29, 31 | sylibr 224 | 1 ⊢ (𝜒 → Fun 𝑄) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 383 ∧ w3a 1054 = wceq 1523 ∃wex 1744 ∈ wcel 2030 {cab 2637 ≠ wne 2823 ∀wral 2941 ∃wrex 2942 {crab 2945 [wsbc 3468 ∪ cun 3605 ∩ cin 3606 ⊆ wss 3607 ∅c0 3948 {csn 4210 〈cop 4216 ∪ cuni 4468 ∪ ciun 4552 class class class wbr 4685 dom cdm 5143 ↾ cres 5145 Fun wfun 5920 Fn wfn 5921 ‘cfv 5926 predc-bnj14 30882 FrSe w-bnj15 30886 trClc-bnj18 30888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-reg 8538 ax-inf2 8576 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-fal 1529 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-om 7108 df-1o 7605 df-bnj17 30881 df-bnj14 30883 df-bnj13 30885 df-bnj15 30887 df-bnj18 30889 df-bnj19 30891 |
This theorem is referenced by: bnj1312 31252 |
Copyright terms: Public domain | W3C validator |