Mathbox for Jonathan Ben-Naim < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1408 Structured version   Visualization version   GIF version

Theorem bnj1408 31433
 Description: Technical lemma for bnj1414 31434. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1408.1 𝐵 = ( pred(𝑋, 𝐴, 𝑅) ∪ 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))
bnj1408.2 𝐶 = ( pred(𝑋, 𝐴, 𝑅) ∪ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))
bnj1408.3 (𝜃 ↔ (𝑅 FrSe 𝐴𝑋𝐴))
bnj1408.4 (𝜏 ↔ (𝐵 ∈ V ∧ TrFo(𝐵, 𝐴, 𝑅) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵))
Assertion
Ref Expression
bnj1408 ((𝑅 FrSe 𝐴𝑋𝐴) → trCl(𝑋, 𝐴, 𝑅) = 𝐵)
Distinct variable groups:   𝑦,𝐴   𝑦,𝑅   𝑦,𝑋
Allowed substitution hints:   𝜃(𝑦)   𝜏(𝑦)   𝐵(𝑦)   𝐶(𝑦)

Proof of Theorem bnj1408
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 bnj1408.3 . . . 4 (𝜃 ↔ (𝑅 FrSe 𝐴𝑋𝐴))
21biimpri 218 . . 3 ((𝑅 FrSe 𝐴𝑋𝐴) → 𝜃)
3 bnj1408.1 . . . . 5 𝐵 = ( pred(𝑋, 𝐴, 𝑅) ∪ 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))
43bnj1413 31432 . . . 4 ((𝑅 FrSe 𝐴𝑋𝐴) → 𝐵 ∈ V)
5 simplll 815 . . . . . . . . 9 ((((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑧𝐵) ∧ 𝑧 ∈ pred(𝑋, 𝐴, 𝑅)) → 𝑅 FrSe 𝐴)
6 bnj213 31281 . . . . . . . . . . 11 pred(𝑋, 𝐴, 𝑅) ⊆ 𝐴
76sseli 3741 . . . . . . . . . 10 (𝑧 ∈ pred(𝑋, 𝐴, 𝑅) → 𝑧𝐴)
87adantl 473 . . . . . . . . 9 ((((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑧𝐵) ∧ 𝑧 ∈ pred(𝑋, 𝐴, 𝑅)) → 𝑧𝐴)
9 bnj906 31329 . . . . . . . . 9 ((𝑅 FrSe 𝐴𝑧𝐴) → pred(𝑧, 𝐴, 𝑅) ⊆ trCl(𝑧, 𝐴, 𝑅))
105, 8, 9syl2anc 696 . . . . . . . 8 ((((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑧𝐵) ∧ 𝑧 ∈ pred(𝑋, 𝐴, 𝑅)) → pred(𝑧, 𝐴, 𝑅) ⊆ trCl(𝑧, 𝐴, 𝑅))
11 bnj1318 31422 . . . . . . . . . . 11 (𝑦 = 𝑧 → trCl(𝑦, 𝐴, 𝑅) = trCl(𝑧, 𝐴, 𝑅))
1211ssiun2s 4717 . . . . . . . . . 10 (𝑧 ∈ pred(𝑋, 𝐴, 𝑅) → trCl(𝑧, 𝐴, 𝑅) ⊆ 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))
13 ssun4 3923 . . . . . . . . . . 11 ( trCl(𝑧, 𝐴, 𝑅) ⊆ 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) → trCl(𝑧, 𝐴, 𝑅) ⊆ ( pred(𝑋, 𝐴, 𝑅) ∪ 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)))
1413, 3syl6sseqr 3794 . . . . . . . . . 10 ( trCl(𝑧, 𝐴, 𝑅) ⊆ 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) → trCl(𝑧, 𝐴, 𝑅) ⊆ 𝐵)
1512, 14syl 17 . . . . . . . . 9 (𝑧 ∈ pred(𝑋, 𝐴, 𝑅) → trCl(𝑧, 𝐴, 𝑅) ⊆ 𝐵)
1615adantl 473 . . . . . . . 8 ((((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑧𝐵) ∧ 𝑧 ∈ pred(𝑋, 𝐴, 𝑅)) → trCl(𝑧, 𝐴, 𝑅) ⊆ 𝐵)
1710, 16sstrd 3755 . . . . . . 7 ((((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑧𝐵) ∧ 𝑧 ∈ pred(𝑋, 𝐴, 𝑅)) → pred(𝑧, 𝐴, 𝑅) ⊆ 𝐵)
18 simpr 479 . . . . . . . . . . 11 ((((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑧𝐵) ∧ 𝑧 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) → 𝑧 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))
1918bnj1405 31236 . . . . . . . . . 10 ((((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑧𝐵) ∧ 𝑧 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) → ∃𝑦 ∈ pred (𝑋, 𝐴, 𝑅)𝑧 ∈ trCl(𝑦, 𝐴, 𝑅))
20 biid 251 . . . . . . . . . 10 (((((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑧𝐵) ∧ 𝑧 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) ∧ 𝑦 ∈ pred(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ trCl(𝑦, 𝐴, 𝑅)) ↔ ((((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑧𝐵) ∧ 𝑧 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) ∧ 𝑦 ∈ pred(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ trCl(𝑦, 𝐴, 𝑅)))
21 nfv 1993 . . . . . . . . . . . . 13 𝑦(𝑅 FrSe 𝐴𝑋𝐴)
22 nfcv 2903 . . . . . . . . . . . . . . . 16 𝑦 pred(𝑋, 𝐴, 𝑅)
23 nfiu1 4703 . . . . . . . . . . . . . . . 16 𝑦 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)
2422, 23nfun 3913 . . . . . . . . . . . . . . 15 𝑦( pred(𝑋, 𝐴, 𝑅) ∪ 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))
253, 24nfcxfr 2901 . . . . . . . . . . . . . 14 𝑦𝐵
2625nfcri 2897 . . . . . . . . . . . . 13 𝑦 𝑧𝐵
2721, 26nfan 1978 . . . . . . . . . . . 12 𝑦((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑧𝐵)
2823nfcri 2897 . . . . . . . . . . . 12 𝑦 𝑧 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)
2927, 28nfan 1978 . . . . . . . . . . 11 𝑦(((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑧𝐵) ∧ 𝑧 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))
3029nf5ri 2213 . . . . . . . . . 10 ((((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑧𝐵) ∧ 𝑧 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) → ∀𝑦(((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑧𝐵) ∧ 𝑧 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)))
3119, 20, 30bnj1521 31250 . . . . . . . . 9 ((((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑧𝐵) ∧ 𝑧 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) → ∃𝑦((((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑧𝐵) ∧ 𝑧 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) ∧ 𝑦 ∈ pred(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ trCl(𝑦, 𝐴, 𝑅)))
32 simplll 815 . . . . . . . . . . . . 13 ((((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑧𝐵) ∧ 𝑧 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) → 𝑅 FrSe 𝐴)
33323ad2ant1 1128 . . . . . . . . . . . 12 (((((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑧𝐵) ∧ 𝑧 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) ∧ 𝑦 ∈ pred(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ trCl(𝑦, 𝐴, 𝑅)) → 𝑅 FrSe 𝐴)
34 bnj1147 31391 . . . . . . . . . . . . 13 trCl(𝑦, 𝐴, 𝑅) ⊆ 𝐴
35 simp3 1133 . . . . . . . . . . . . 13 (((((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑧𝐵) ∧ 𝑧 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) ∧ 𝑦 ∈ pred(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ trCl(𝑦, 𝐴, 𝑅)) → 𝑧 ∈ trCl(𝑦, 𝐴, 𝑅))
3634, 35bnj1213 31198 . . . . . . . . . . . 12 (((((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑧𝐵) ∧ 𝑧 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) ∧ 𝑦 ∈ pred(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ trCl(𝑦, 𝐴, 𝑅)) → 𝑧𝐴)
3733, 36, 9syl2anc 696 . . . . . . . . . . 11 (((((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑧𝐵) ∧ 𝑧 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) ∧ 𝑦 ∈ pred(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ trCl(𝑦, 𝐴, 𝑅)) → pred(𝑧, 𝐴, 𝑅) ⊆ trCl(𝑧, 𝐴, 𝑅))
38 simp2 1132 . . . . . . . . . . . . 13 (((((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑧𝐵) ∧ 𝑧 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) ∧ 𝑦 ∈ pred(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ trCl(𝑦, 𝐴, 𝑅)) → 𝑦 ∈ pred(𝑋, 𝐴, 𝑅))
396, 38bnj1213 31198 . . . . . . . . . . . 12 (((((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑧𝐵) ∧ 𝑧 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) ∧ 𝑦 ∈ pred(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ trCl(𝑦, 𝐴, 𝑅)) → 𝑦𝐴)
40 bnj1125 31389 . . . . . . . . . . . 12 ((𝑅 FrSe 𝐴𝑦𝐴𝑧 ∈ trCl(𝑦, 𝐴, 𝑅)) → trCl(𝑧, 𝐴, 𝑅) ⊆ trCl(𝑦, 𝐴, 𝑅))
4133, 39, 35, 40syl3anc 1477 . . . . . . . . . . 11 (((((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑧𝐵) ∧ 𝑧 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) ∧ 𝑦 ∈ pred(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ trCl(𝑦, 𝐴, 𝑅)) → trCl(𝑧, 𝐴, 𝑅) ⊆ trCl(𝑦, 𝐴, 𝑅))
4237, 41sstrd 3755 . . . . . . . . . 10 (((((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑧𝐵) ∧ 𝑧 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) ∧ 𝑦 ∈ pred(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ trCl(𝑦, 𝐴, 𝑅)) → pred(𝑧, 𝐴, 𝑅) ⊆ trCl(𝑦, 𝐴, 𝑅))
43 ssiun2 4716 . . . . . . . . . . . 12 (𝑦 ∈ pred(𝑋, 𝐴, 𝑅) → trCl(𝑦, 𝐴, 𝑅) ⊆ 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))
44433ad2ant2 1129 . . . . . . . . . . 11 (((((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑧𝐵) ∧ 𝑧 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) ∧ 𝑦 ∈ pred(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ trCl(𝑦, 𝐴, 𝑅)) → trCl(𝑦, 𝐴, 𝑅) ⊆ 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))
45 ssun4 3923 . . . . . . . . . . . 12 ( trCl(𝑦, 𝐴, 𝑅) ⊆ 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) → trCl(𝑦, 𝐴, 𝑅) ⊆ ( pred(𝑋, 𝐴, 𝑅) ∪ 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)))
4645, 3syl6sseqr 3794 . . . . . . . . . . 11 ( trCl(𝑦, 𝐴, 𝑅) ⊆ 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) → trCl(𝑦, 𝐴, 𝑅) ⊆ 𝐵)
4744, 46syl 17 . . . . . . . . . 10 (((((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑧𝐵) ∧ 𝑧 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) ∧ 𝑦 ∈ pred(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ trCl(𝑦, 𝐴, 𝑅)) → trCl(𝑦, 𝐴, 𝑅) ⊆ 𝐵)
4842, 47sstrd 3755 . . . . . . . . 9 (((((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑧𝐵) ∧ 𝑧 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) ∧ 𝑦 ∈ pred(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ trCl(𝑦, 𝐴, 𝑅)) → pred(𝑧, 𝐴, 𝑅) ⊆ 𝐵)
4931, 48bnj593 31144 . . . . . . . 8 ((((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑧𝐵) ∧ 𝑧 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) → ∃𝑦 pred(𝑧, 𝐴, 𝑅) ⊆ 𝐵)
50 nfcv 2903 . . . . . . . . . 10 𝑦 pred(𝑧, 𝐴, 𝑅)
5150, 25nfss 3738 . . . . . . . . 9 𝑦 pred(𝑧, 𝐴, 𝑅) ⊆ 𝐵
5251nf5ri 2213 . . . . . . . 8 ( pred(𝑧, 𝐴, 𝑅) ⊆ 𝐵 → ∀𝑦 pred(𝑧, 𝐴, 𝑅) ⊆ 𝐵)
5349, 52bnj1397 31234 . . . . . . 7 ((((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑧𝐵) ∧ 𝑧 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) → pred(𝑧, 𝐴, 𝑅) ⊆ 𝐵)
54 simpr 479 . . . . . . . 8 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑧𝐵) → 𝑧𝐵)
553bnj1138 31188 . . . . . . . 8 (𝑧𝐵 ↔ (𝑧 ∈ pred(𝑋, 𝐴, 𝑅) ∨ 𝑧 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)))
5654, 55sylib 208 . . . . . . 7 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑧𝐵) → (𝑧 ∈ pred(𝑋, 𝐴, 𝑅) ∨ 𝑧 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)))
5717, 53, 56mpjaodan 862 . . . . . 6 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑧𝐵) → pred(𝑧, 𝐴, 𝑅) ⊆ 𝐵)
5857ralrimiva 3105 . . . . 5 ((𝑅 FrSe 𝐴𝑋𝐴) → ∀𝑧𝐵 pred(𝑧, 𝐴, 𝑅) ⊆ 𝐵)
59 df-bnj19 31094 . . . . 5 ( TrFo(𝐵, 𝐴, 𝑅) ↔ ∀𝑧𝐵 pred(𝑧, 𝐴, 𝑅) ⊆ 𝐵)
6058, 59sylibr 224 . . . 4 ((𝑅 FrSe 𝐴𝑋𝐴) → TrFo(𝐵, 𝐴, 𝑅))
613bnj931 31170 . . . . 5 pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵
6261a1i 11 . . . 4 ((𝑅 FrSe 𝐴𝑋𝐴) → pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵)
63 bnj1408.4 . . . 4 (𝜏 ↔ (𝐵 ∈ V ∧ TrFo(𝐵, 𝐴, 𝑅) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵))
644, 60, 62, 63syl3anbrc 1429 . . 3 ((𝑅 FrSe 𝐴𝑋𝐴) → 𝜏)
651, 63bnj1124 31385 . . 3 ((𝜃𝜏) → trCl(𝑋, 𝐴, 𝑅) ⊆ 𝐵)
662, 64, 65syl2anc 696 . 2 ((𝑅 FrSe 𝐴𝑋𝐴) → trCl(𝑋, 𝐴, 𝑅) ⊆ 𝐵)
67 bnj906 31329 . . . . 5 ((𝑅 FrSe 𝐴𝑋𝐴) → pred(𝑋, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅))
68 iunss1 4685 . . . . 5 ( pred(𝑋, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅) → 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) ⊆ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))
69 unss2 3928 . . . . 5 ( 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) ⊆ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) → ( pred(𝑋, 𝐴, 𝑅) ∪ 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) ⊆ ( pred(𝑋, 𝐴, 𝑅) ∪ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)))
7067, 68, 693syl 18 . . . 4 ((𝑅 FrSe 𝐴𝑋𝐴) → ( pred(𝑋, 𝐴, 𝑅) ∪ 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) ⊆ ( pred(𝑋, 𝐴, 𝑅) ∪ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)))
71 bnj1408.2 . . . 4 𝐶 = ( pred(𝑋, 𝐴, 𝑅) ∪ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))
7270, 3, 713sstr4g 3788 . . 3 ((𝑅 FrSe 𝐴𝑋𝐴) → 𝐵𝐶)
73 biid 251 . . . 4 ((𝑅 FrSe 𝐴𝑋𝐴) ↔ (𝑅 FrSe 𝐴𝑋𝐴))
74 biid 251 . . . 4 ((𝐶 ∈ V ∧ TrFo(𝐶, 𝐴, 𝑅) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐶) ↔ (𝐶 ∈ V ∧ TrFo(𝐶, 𝐴, 𝑅) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐶))
7571, 73, 74bnj1136 31394 . . 3 ((𝑅 FrSe 𝐴𝑋𝐴) → trCl(𝑋, 𝐴, 𝑅) = 𝐶)
7672, 75sseqtr4d 3784 . 2 ((𝑅 FrSe 𝐴𝑋𝐴) → 𝐵 ⊆ trCl(𝑋, 𝐴, 𝑅))
7766, 76eqssd 3762 1 ((𝑅 FrSe 𝐴𝑋𝐴) → trCl(𝑋, 𝐴, 𝑅) = 𝐵)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∨ wo 382   ∧ wa 383   ∧ w3a 1072   = wceq 1632   ∈ wcel 2140  ∀wral 3051  Vcvv 3341   ∪ cun 3714   ⊆ wss 3716  ∪ ciun 4673   predc-bnj14 31085   FrSe w-bnj15 31089   trClc-bnj18 31091   TrFow-bnj19 31093 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-reg 8665  ax-inf2 8714 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-uni 4590  df-iun 4675  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-om 7233  df-1o 7731  df-bnj17 31084  df-bnj14 31086  df-bnj13 31088  df-bnj15 31090  df-bnj18 31092  df-bnj19 31094 This theorem is referenced by:  bnj1414  31434
 Copyright terms: Public domain W3C validator