![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1384 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj60 31256. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1384.1 | ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} |
bnj1384.2 | ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
bnj1384.3 | ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
bnj1384.4 | ⊢ (𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) |
bnj1384.5 | ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏} |
bnj1384.6 | ⊢ (𝜓 ↔ (𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅)) |
bnj1384.7 | ⊢ (𝜒 ↔ (𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥)) |
bnj1384.8 | ⊢ (𝜏′ ↔ [𝑦 / 𝑥]𝜏) |
bnj1384.9 | ⊢ 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′} |
bnj1384.10 | ⊢ 𝑃 = ∪ 𝐻 |
Ref | Expression |
---|---|
bnj1384 | ⊢ (𝑅 FrSe 𝐴 → Fun 𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1384.1 | . . . . 5 ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} | |
2 | bnj1384.2 | . . . . 5 ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 | |
3 | bnj1384.3 | . . . . 5 ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} | |
4 | bnj1384.4 | . . . . 5 ⊢ (𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) | |
5 | bnj1384.5 | . . . . 5 ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏} | |
6 | bnj1384.6 | . . . . 5 ⊢ (𝜓 ↔ (𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅)) | |
7 | bnj1384.7 | . . . . 5 ⊢ (𝜒 ↔ (𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥)) | |
8 | bnj1384.8 | . . . . 5 ⊢ (𝜏′ ↔ [𝑦 / 𝑥]𝜏) | |
9 | bnj1384.9 | . . . . 5 ⊢ 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′} | |
10 | bnj1384.10 | . . . . 5 ⊢ 𝑃 = ∪ 𝐻 | |
11 | 1, 2, 3, 4, 8 | bnj1373 31224 | . . . . 5 ⊢ (𝜏′ ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))) |
12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | bnj1371 31223 | . . . 4 ⊢ (𝑓 ∈ 𝐻 → Fun 𝑓) |
13 | 12 | rgen 2951 | . . 3 ⊢ ∀𝑓 ∈ 𝐻 Fun 𝑓 |
14 | id 22 | . . . . . 6 ⊢ (𝑅 FrSe 𝐴 → 𝑅 FrSe 𝐴) | |
15 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | bnj1374 31225 | . . . . . 6 ⊢ (𝑓 ∈ 𝐻 → 𝑓 ∈ 𝐶) |
16 | nfab1 2795 | . . . . . . . . . 10 ⊢ Ⅎ𝑓{𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′} | |
17 | 9, 16 | nfcxfr 2791 | . . . . . . . . 9 ⊢ Ⅎ𝑓𝐻 |
18 | 17 | nfcri 2787 | . . . . . . . 8 ⊢ Ⅎ𝑓 𝑔 ∈ 𝐻 |
19 | nfab1 2795 | . . . . . . . . . 10 ⊢ Ⅎ𝑓{𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} | |
20 | 3, 19 | nfcxfr 2791 | . . . . . . . . 9 ⊢ Ⅎ𝑓𝐶 |
21 | 20 | nfcri 2787 | . . . . . . . 8 ⊢ Ⅎ𝑓 𝑔 ∈ 𝐶 |
22 | 18, 21 | nfim 1865 | . . . . . . 7 ⊢ Ⅎ𝑓(𝑔 ∈ 𝐻 → 𝑔 ∈ 𝐶) |
23 | eleq1 2718 | . . . . . . . 8 ⊢ (𝑓 = 𝑔 → (𝑓 ∈ 𝐻 ↔ 𝑔 ∈ 𝐻)) | |
24 | eleq1 2718 | . . . . . . . 8 ⊢ (𝑓 = 𝑔 → (𝑓 ∈ 𝐶 ↔ 𝑔 ∈ 𝐶)) | |
25 | 23, 24 | imbi12d 333 | . . . . . . 7 ⊢ (𝑓 = 𝑔 → ((𝑓 ∈ 𝐻 → 𝑓 ∈ 𝐶) ↔ (𝑔 ∈ 𝐻 → 𝑔 ∈ 𝐶))) |
26 | 22, 25, 15 | chvar 2298 | . . . . . 6 ⊢ (𝑔 ∈ 𝐻 → 𝑔 ∈ 𝐶) |
27 | eqid 2651 | . . . . . . 7 ⊢ (dom 𝑓 ∩ dom 𝑔) = (dom 𝑓 ∩ dom 𝑔) | |
28 | 1, 2, 3, 27 | bnj1326 31220 | . . . . . 6 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑓 ∈ 𝐶 ∧ 𝑔 ∈ 𝐶) → (𝑓 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑔 ↾ (dom 𝑓 ∩ dom 𝑔))) |
29 | 14, 15, 26, 28 | syl3an 1408 | . . . . 5 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑓 ∈ 𝐻 ∧ 𝑔 ∈ 𝐻) → (𝑓 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑔 ↾ (dom 𝑓 ∩ dom 𝑔))) |
30 | 29 | 3expib 1287 | . . . 4 ⊢ (𝑅 FrSe 𝐴 → ((𝑓 ∈ 𝐻 ∧ 𝑔 ∈ 𝐻) → (𝑓 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑔 ↾ (dom 𝑓 ∩ dom 𝑔)))) |
31 | 30 | ralrimivv 2999 | . . 3 ⊢ (𝑅 FrSe 𝐴 → ∀𝑓 ∈ 𝐻 ∀𝑔 ∈ 𝐻 (𝑓 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑔 ↾ (dom 𝑓 ∩ dom 𝑔))) |
32 | biid 251 | . . . 4 ⊢ (∀𝑓 ∈ 𝐻 Fun 𝑓 ↔ ∀𝑓 ∈ 𝐻 Fun 𝑓) | |
33 | biid 251 | . . . 4 ⊢ ((∀𝑓 ∈ 𝐻 Fun 𝑓 ∧ ∀𝑓 ∈ 𝐻 ∀𝑔 ∈ 𝐻 (𝑓 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑔 ↾ (dom 𝑓 ∩ dom 𝑔))) ↔ (∀𝑓 ∈ 𝐻 Fun 𝑓 ∧ ∀𝑓 ∈ 𝐻 ∀𝑔 ∈ 𝐻 (𝑓 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑔 ↾ (dom 𝑓 ∩ dom 𝑔)))) | |
34 | 9 | bnj1317 31018 | . . . 4 ⊢ (𝑧 ∈ 𝐻 → ∀𝑓 𝑧 ∈ 𝐻) |
35 | 32, 27, 33, 34 | bnj1386 31030 | . . 3 ⊢ ((∀𝑓 ∈ 𝐻 Fun 𝑓 ∧ ∀𝑓 ∈ 𝐻 ∀𝑔 ∈ 𝐻 (𝑓 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑔 ↾ (dom 𝑓 ∩ dom 𝑔))) → Fun ∪ 𝐻) |
36 | 13, 31, 35 | sylancr 696 | . 2 ⊢ (𝑅 FrSe 𝐴 → Fun ∪ 𝐻) |
37 | 10 | funeqi 5947 | . 2 ⊢ (Fun 𝑃 ↔ Fun ∪ 𝐻) |
38 | 36, 37 | sylibr 224 | 1 ⊢ (𝑅 FrSe 𝐴 → Fun 𝑃) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 383 ∧ w3a 1054 = wceq 1523 ∃wex 1744 ∈ wcel 2030 {cab 2637 ≠ wne 2823 ∀wral 2941 ∃wrex 2942 {crab 2945 [wsbc 3468 ∪ cun 3605 ∩ cin 3606 ⊆ wss 3607 ∅c0 3948 {csn 4210 〈cop 4216 ∪ cuni 4468 class class class wbr 4685 dom cdm 5143 ↾ cres 5145 Fun wfun 5920 Fn wfn 5921 ‘cfv 5926 predc-bnj14 30882 FrSe w-bnj15 30886 trClc-bnj18 30888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-reg 8538 ax-inf2 8576 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-fal 1529 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-om 7108 df-1o 7605 df-bnj17 30881 df-bnj14 30883 df-bnj13 30885 df-bnj15 30887 df-bnj18 30889 df-bnj19 30891 |
This theorem is referenced by: bnj1312 31252 |
Copyright terms: Public domain | W3C validator |