![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1373 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj60 31256. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1373.1 | ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} |
bnj1373.2 | ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
bnj1373.3 | ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
bnj1373.4 | ⊢ (𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) |
bnj1373.5 | ⊢ (𝜏′ ↔ [𝑦 / 𝑥]𝜏) |
Ref | Expression |
---|---|
bnj1373 | ⊢ (𝜏′ ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1373.5 | . 2 ⊢ (𝜏′ ↔ [𝑦 / 𝑥]𝜏) | |
2 | vex 3234 | . . 3 ⊢ 𝑦 ∈ V | |
3 | bnj1373.3 | . . . . . . 7 ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} | |
4 | bnj1373.1 | . . . . . . . 8 ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} | |
5 | 4 | bnj1309 31216 | . . . . . . 7 ⊢ (𝑓 ∈ 𝐵 → ∀𝑥 𝑓 ∈ 𝐵) |
6 | 3, 5 | bnj1307 31217 | . . . . . 6 ⊢ (𝑓 ∈ 𝐶 → ∀𝑥 𝑓 ∈ 𝐶) |
7 | 6 | bnj1351 31023 | . . . . 5 ⊢ ((𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) → ∀𝑥(𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))) |
8 | 7 | nf5i 2064 | . . . 4 ⊢ Ⅎ𝑥(𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) |
9 | bnj1373.4 | . . . . 5 ⊢ (𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) | |
10 | sneq 4220 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → {𝑥} = {𝑦}) | |
11 | bnj1318 31219 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → trCl(𝑥, 𝐴, 𝑅) = trCl(𝑦, 𝐴, 𝑅)) | |
12 | 10, 11 | uneq12d 3801 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)) = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) |
13 | 12 | eqeq2d 2661 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)) ↔ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))) |
14 | 13 | anbi2d 740 | . . . . 5 ⊢ (𝑥 = 𝑦 → ((𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))))) |
15 | 9, 14 | syl5bb 272 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))))) |
16 | 8, 15 | sbciegf 3500 | . . 3 ⊢ (𝑦 ∈ V → ([𝑦 / 𝑥]𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))))) |
17 | 2, 16 | ax-mp 5 | . 2 ⊢ ([𝑦 / 𝑥]𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))) |
18 | 1, 17 | bitri 264 | 1 ⊢ (𝜏′ ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 383 = wceq 1523 ∈ wcel 2030 {cab 2637 ∀wral 2941 ∃wrex 2942 Vcvv 3231 [wsbc 3468 ∪ cun 3605 ⊆ wss 3607 {csn 4210 〈cop 4216 dom cdm 5143 ↾ cres 5145 Fn wfn 5921 ‘cfv 5926 predc-bnj14 30882 trClc-bnj18 30888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-iun 4554 df-br 4686 df-bnj14 30883 df-bnj18 30889 |
This theorem is referenced by: bnj1374 31225 bnj1384 31226 bnj1398 31228 bnj1450 31244 bnj1489 31250 |
Copyright terms: Public domain | W3C validator |