Mathbox for Jonathan Ben-Naim < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1311 Structured version   Visualization version   GIF version

Theorem bnj1311 31218
 Description: Technical lemma for bnj60 31256. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1311.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj1311.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1311.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
bnj1311.4 𝐷 = (dom 𝑔 ∩ dom )
Assertion
Ref Expression
bnj1311 ((𝑅 FrSe 𝐴𝑔𝐶𝐶) → (𝑔𝐷) = (𝐷))
Distinct variable groups:   𝐴,𝑑,𝑓,𝑥   𝐵,𝑓,𝑔   𝐵,,𝑓   𝐷,𝑑,𝑥   𝐺,𝑑,𝑓,𝑔   ,𝐺,𝑑   𝑅,𝑑,𝑓,𝑥   𝑔,𝑌   ,𝑌   𝑥,𝑔   𝑥,
Allowed substitution hints:   𝐴(𝑔,)   𝐵(𝑥,𝑑)   𝐶(𝑥,𝑓,𝑔,,𝑑)   𝐷(𝑓,𝑔,)   𝑅(𝑔,)   𝐺(𝑥)   𝑌(𝑥,𝑓,𝑑)

Proof of Theorem bnj1311
Dummy variables 𝑤 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 biid 251 . . . . . . . 8 ((𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)) ↔ (𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)))
21bnj1232 31000 . . . . . . 7 ((𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)) → 𝑅 FrSe 𝐴)
3 ssrab2 3720 . . . . . . . 8 {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)} ⊆ 𝐷
4 bnj1311.4 . . . . . . . . 9 𝐷 = (dom 𝑔 ∩ dom )
51bnj1235 31001 . . . . . . . . . . 11 ((𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)) → 𝑔𝐶)
6 bnj1311.2 . . . . . . . . . . . 12 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
7 bnj1311.3 . . . . . . . . . . . 12 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
8 eqid 2651 . . . . . . . . . . . 12 𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))⟩ = ⟨𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))⟩
9 eqid 2651 . . . . . . . . . . . 12 {𝑔 ∣ ∃𝑑𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑔𝑥) = (𝐺‘⟨𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))⟩))} = {𝑔 ∣ ∃𝑑𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑔𝑥) = (𝐺‘⟨𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))⟩))}
106, 7, 8, 9bnj1234 31207 . . . . . . . . . . 11 𝐶 = {𝑔 ∣ ∃𝑑𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑔𝑥) = (𝐺‘⟨𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))⟩))}
115, 10syl6eleq 2740 . . . . . . . . . 10 ((𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)) → 𝑔 ∈ {𝑔 ∣ ∃𝑑𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑔𝑥) = (𝐺‘⟨𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))⟩))})
12 abid 2639 . . . . . . . . . . . . . 14 (𝑔 ∈ {𝑔 ∣ ∃𝑑𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑔𝑥) = (𝐺‘⟨𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))⟩))} ↔ ∃𝑑𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑔𝑥) = (𝐺‘⟨𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))⟩)))
1312bnj1238 31003 . . . . . . . . . . . . 13 (𝑔 ∈ {𝑔 ∣ ∃𝑑𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑔𝑥) = (𝐺‘⟨𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))⟩))} → ∃𝑑𝐵 𝑔 Fn 𝑑)
1413bnj1196 30991 . . . . . . . . . . . 12 (𝑔 ∈ {𝑔 ∣ ∃𝑑𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑔𝑥) = (𝐺‘⟨𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))⟩))} → ∃𝑑(𝑑𝐵𝑔 Fn 𝑑))
15 bnj1311.1 . . . . . . . . . . . . . . 15 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
1615abeq2i 2764 . . . . . . . . . . . . . 14 (𝑑𝐵 ↔ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑))
1716simplbi 475 . . . . . . . . . . . . 13 (𝑑𝐵𝑑𝐴)
18 fndm 6028 . . . . . . . . . . . . 13 (𝑔 Fn 𝑑 → dom 𝑔 = 𝑑)
1917, 18bnj1241 31004 . . . . . . . . . . . 12 ((𝑑𝐵𝑔 Fn 𝑑) → dom 𝑔𝐴)
2014, 19bnj593 30941 . . . . . . . . . . 11 (𝑔 ∈ {𝑔 ∣ ∃𝑑𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑔𝑥) = (𝐺‘⟨𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))⟩))} → ∃𝑑dom 𝑔𝐴)
2120bnj937 30968 . . . . . . . . . 10 (𝑔 ∈ {𝑔 ∣ ∃𝑑𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑔𝑥) = (𝐺‘⟨𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))⟩))} → dom 𝑔𝐴)
22 ssinss1 3874 . . . . . . . . . 10 (dom 𝑔𝐴 → (dom 𝑔 ∩ dom ) ⊆ 𝐴)
2311, 21, 223syl 18 . . . . . . . . 9 ((𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)) → (dom 𝑔 ∩ dom ) ⊆ 𝐴)
244, 23syl5eqss 3682 . . . . . . . 8 ((𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)) → 𝐷𝐴)
253, 24syl5ss 3647 . . . . . . 7 ((𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)) → {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)} ⊆ 𝐴)
26 eqid 2651 . . . . . . . 8 {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)} = {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)}
27 biid 251 . . . . . . . 8 (((𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)) ∧ 𝑥 ∈ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)} ∧ ∀𝑦 ∈ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)} ¬ 𝑦𝑅𝑥) ↔ ((𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)) ∧ 𝑥 ∈ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)} ∧ ∀𝑦 ∈ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)} ¬ 𝑦𝑅𝑥))
2815, 6, 7, 4, 26, 1, 27bnj1253 31211 . . . . . . 7 ((𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)) → {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)} ≠ ∅)
29 nfrab1 3152 . . . . . . . . 9 𝑥{𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)}
3029nfcrii 2786 . . . . . . . 8 (𝑧 ∈ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)} → ∀𝑥 𝑧 ∈ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)})
3130bnj1228 31205 . . . . . . 7 ((𝑅 FrSe 𝐴 ∧ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)} ⊆ 𝐴 ∧ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)} ≠ ∅) → ∃𝑥 ∈ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)}∀𝑦 ∈ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)} ¬ 𝑦𝑅𝑥)
322, 25, 28, 31syl3anc 1366 . . . . . 6 ((𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)) → ∃𝑥 ∈ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)}∀𝑦 ∈ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)} ¬ 𝑦𝑅𝑥)
33 ax-5 1879 . . . . . . 7 (𝑅 FrSe 𝐴 → ∀𝑥 𝑅 FrSe 𝐴)
3415bnj1309 31216 . . . . . . . . 9 (𝑤𝐵 → ∀𝑥 𝑤𝐵)
357, 34bnj1307 31217 . . . . . . . 8 (𝑤𝐶 → ∀𝑥 𝑤𝐶)
3635hblem 2760 . . . . . . 7 (𝑔𝐶 → ∀𝑥 𝑔𝐶)
3735hblem 2760 . . . . . . 7 (𝐶 → ∀𝑥 𝐶)
38 ax-5 1879 . . . . . . 7 ((𝑔𝐷) ≠ (𝐷) → ∀𝑥(𝑔𝐷) ≠ (𝐷))
3933, 36, 37, 38bnj982 30975 . . . . . 6 ((𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)) → ∀𝑥(𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)))
4032, 27, 39bnj1521 31047 . . . . 5 ((𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)) → ∃𝑥((𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)) ∧ 𝑥 ∈ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)} ∧ ∀𝑦 ∈ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)} ¬ 𝑦𝑅𝑥))
41 simp2 1082 . . . . 5 (((𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)) ∧ 𝑥 ∈ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)} ∧ ∀𝑦 ∈ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)} ¬ 𝑦𝑅𝑥) → 𝑥 ∈ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)})
4215, 6, 7, 4, 26, 1, 27bnj1279 31212 . . . . . . . . 9 ((𝑥 ∈ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)} ∧ ∀𝑦 ∈ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)} ¬ 𝑦𝑅𝑥) → ( pred(𝑥, 𝐴, 𝑅) ∩ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)}) = ∅)
43423adant1 1099 . . . . . . . 8 (((𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)) ∧ 𝑥 ∈ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)} ∧ ∀𝑦 ∈ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)} ¬ 𝑦𝑅𝑥) → ( pred(𝑥, 𝐴, 𝑅) ∩ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)}) = ∅)
4415, 6, 7, 4, 26, 1, 27, 43bnj1280 31214 . . . . . . 7 (((𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)) ∧ 𝑥 ∈ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)} ∧ ∀𝑦 ∈ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)} ¬ 𝑦𝑅𝑥) → (𝑔 ↾ pred(𝑥, 𝐴, 𝑅)) = ( ↾ pred(𝑥, 𝐴, 𝑅)))
45 eqid 2651 . . . . . . 7 𝑥, ( ↾ pred(𝑥, 𝐴, 𝑅))⟩ = ⟨𝑥, ( ↾ pred(𝑥, 𝐴, 𝑅))⟩
46 eqid 2651 . . . . . . 7 { ∣ ∃𝑑𝐵 ( Fn 𝑑 ∧ ∀𝑥𝑑 (𝑥) = (𝐺‘⟨𝑥, ( ↾ pred(𝑥, 𝐴, 𝑅))⟩))} = { ∣ ∃𝑑𝐵 ( Fn 𝑑 ∧ ∀𝑥𝑑 (𝑥) = (𝐺‘⟨𝑥, ( ↾ pred(𝑥, 𝐴, 𝑅))⟩))}
4715, 6, 7, 4, 26, 1, 27, 44, 8, 9, 45, 46bnj1296 31215 . . . . . 6 (((𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)) ∧ 𝑥 ∈ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)} ∧ ∀𝑦 ∈ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)} ¬ 𝑦𝑅𝑥) → (𝑔𝑥) = (𝑥))
4826bnj1538 31051 . . . . . . 7 (𝑥 ∈ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)} → (𝑔𝑥) ≠ (𝑥))
4948necon2bi 2853 . . . . . 6 ((𝑔𝑥) = (𝑥) → ¬ 𝑥 ∈ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)})
5047, 49syl 17 . . . . 5 (((𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)) ∧ 𝑥 ∈ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)} ∧ ∀𝑦 ∈ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)} ¬ 𝑦𝑅𝑥) → ¬ 𝑥 ∈ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)})
5140, 41, 50bnj1304 31016 . . . 4 ¬ (𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷))
52 df-bnj17 30881 . . . 4 ((𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)) ↔ ((𝑅 FrSe 𝐴𝑔𝐶𝐶) ∧ (𝑔𝐷) ≠ (𝐷)))
5351, 52mtbi 311 . . 3 ¬ ((𝑅 FrSe 𝐴𝑔𝐶𝐶) ∧ (𝑔𝐷) ≠ (𝐷))
5453imnani 438 . 2 ((𝑅 FrSe 𝐴𝑔𝐶𝐶) → ¬ (𝑔𝐷) ≠ (𝐷))
55 nne 2827 . 2 (¬ (𝑔𝐷) ≠ (𝐷) ↔ (𝑔𝐷) = (𝐷))
5654, 55sylib 208 1 ((𝑅 FrSe 𝐴𝑔𝐶𝐶) → (𝑔𝐷) = (𝐷))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   ∧ w3a 1054   = wceq 1523   ∈ wcel 2030  {cab 2637   ≠ wne 2823  ∀wral 2941  ∃wrex 2942  {crab 2945   ∩ cin 3606   ⊆ wss 3607  ∅c0 3948  ⟨cop 4216   class class class wbr 4685  dom cdm 5143   ↾ cres 5145   Fn wfn 5921  ‘cfv 5926   ∧ w-bnj17 30880   predc-bnj14 30882   FrSe w-bnj15 30886 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-reg 8538  ax-inf2 8576 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-om 7108  df-1o 7605  df-bnj17 30881  df-bnj14 30883  df-bnj13 30885  df-bnj15 30887  df-bnj18 30889  df-bnj19 30891 This theorem is referenced by:  bnj1326  31220  bnj60  31256
 Copyright terms: Public domain W3C validator