Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj126 Structured version   Visualization version   GIF version

Theorem bnj126 31271
Description: Technical lemma for bnj150 31274. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj126.1 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj126.2 (𝜓′[1𝑜 / 𝑛]𝜓)
bnj126.3 (𝜓″[𝐹 / 𝑓]𝜓′)
bnj126.4 𝐹 = {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}
Assertion
Ref Expression
bnj126 (𝜓″ ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1𝑜 → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅)))
Distinct variable groups:   𝐴,𝑓,𝑛   𝑓,𝐹,𝑖,𝑦   𝑅,𝑓,𝑛   𝑖,𝑛,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦,𝑓,𝑖,𝑛)   𝐴(𝑥,𝑦,𝑖)   𝑅(𝑥,𝑦,𝑖)   𝐹(𝑥,𝑛)   𝜓′(𝑥,𝑦,𝑓,𝑖,𝑛)   𝜓″(𝑥,𝑦,𝑓,𝑖,𝑛)

Proof of Theorem bnj126
StepHypRef Expression
1 bnj126.3 . 2 (𝜓″[𝐹 / 𝑓]𝜓′)
2 bnj126.2 . . 3 (𝜓′[1𝑜 / 𝑛]𝜓)
32sbcbii 3632 . 2 ([𝐹 / 𝑓]𝜓′[𝐹 / 𝑓][1𝑜 / 𝑛]𝜓)
4 bnj126.1 . . 3 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
5 bnj126.4 . . . 4 𝐹 = {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}
65bnj95 31262 . . 3 𝐹 ∈ V
74, 6bnj106 31266 . 2 ([𝐹 / 𝑓][1𝑜 / 𝑛]𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1𝑜 → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅)))
81, 3, 73bitri 286 1 (𝜓″ ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1𝑜 → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1632  wcel 2139  wral 3050  [wsbc 3576  c0 4058  {csn 4321  cop 4327   ciun 4672  suc csuc 5886  cfv 6049  ωcom 7231  1𝑜c1o 7723   predc-bnj14 31084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ral 3055  df-rex 3056  df-v 3342  df-sbc 3577  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-pw 4304  df-sn 4322  df-pr 4324  df-uni 4589  df-iun 4674  df-br 4805  df-suc 5890  df-iota 6012  df-fv 6057  df-1o 7730
This theorem is referenced by:  bnj150  31274  bnj153  31278
  Copyright terms: Public domain W3C validator