![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj105 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj105 | ⊢ 1𝑜 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df1o2 7726 | . 2 ⊢ 1𝑜 = {∅} | |
2 | p0ex 4984 | . 2 ⊢ {∅} ∈ V | |
3 | 1, 2 | eqeltri 2846 | 1 ⊢ 1𝑜 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2145 Vcvv 3351 ∅c0 4063 {csn 4316 1𝑜c1o 7706 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-v 3353 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-pw 4299 df-sn 4317 df-suc 5872 df-1o 7713 |
This theorem is referenced by: bnj106 31276 bnj118 31277 bnj121 31278 bnj125 31280 bnj130 31282 bnj153 31288 |
Copyright terms: Public domain | W3C validator |