Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1033 Structured version   Visualization version   GIF version

Theorem bnj1033 31365
Description: Technical lemma for bnj69 31406. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1033.1 (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
bnj1033.2 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj1033.3 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
bnj1033.4 (𝜃 ↔ (𝑅 FrSe 𝐴𝑋𝐴))
bnj1033.5 (𝜏 ↔ (𝐵 ∈ V ∧ TrFo(𝐵, 𝐴, 𝑅) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵))
bnj1033.6 (𝜂𝑧 ∈ trCl(𝑋, 𝐴, 𝑅))
bnj1033.7 (𝜁 ↔ (𝑖𝑛𝑧 ∈ (𝑓𝑖)))
bnj1033.8 𝐷 = (ω ∖ {∅})
bnj1033.9 𝐾 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}
bnj1033.10 (∃𝑓𝑛𝑖(𝜃𝜏𝜒𝜁) → 𝑧𝐵)
Assertion
Ref Expression
bnj1033 ((𝜃𝜏) → trCl(𝑋, 𝐴, 𝑅) ⊆ 𝐵)
Distinct variable groups:   𝐴,𝑓,𝑖,𝑛,𝑦   𝑧,𝐴,𝑓,𝑖,𝑛   𝑧,𝐵   𝐷,𝑖   𝑅,𝑓,𝑖,𝑛,𝑦   𝑧,𝑅   𝑓,𝑋,𝑖,𝑛,𝑦   𝑧,𝑋   𝜏,𝑓,𝑖,𝑛,𝑧   𝜃,𝑓,𝑖,𝑛,𝑧   𝜑,𝑖
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑓,𝑛)   𝜓(𝑦,𝑧,𝑓,𝑖,𝑛)   𝜒(𝑦,𝑧,𝑓,𝑖,𝑛)   𝜃(𝑦)   𝜏(𝑦)   𝜂(𝑦,𝑧,𝑓,𝑖,𝑛)   𝜁(𝑦,𝑧,𝑓,𝑖,𝑛)   𝐵(𝑦,𝑓,𝑖,𝑛)   𝐷(𝑦,𝑧,𝑓,𝑛)   𝐾(𝑦,𝑧,𝑓,𝑖,𝑛)

Proof of Theorem bnj1033
StepHypRef Expression
1 bnj1033.1 . . . . 5 (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
2 bnj1033.2 . . . . 5 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
3 bnj1033.8 . . . . 5 𝐷 = (ω ∖ {∅})
4 bnj1033.9 . . . . 5 𝐾 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}
5 bnj1033.3 . . . . 5 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
61, 2, 3, 4, 5bnj983 31349 . . . 4 (𝑧 ∈ trCl(𝑋, 𝐴, 𝑅) ↔ ∃𝑓𝑛𝑖(𝜒𝑖𝑛𝑧 ∈ (𝑓𝑖)))
7 19.42v 2030 . . . . . . . . . 10 (∃𝑖((𝜃𝜏) ∧ (𝜒𝑖𝑛𝑧 ∈ (𝑓𝑖))) ↔ ((𝜃𝜏) ∧ ∃𝑖(𝜒𝑖𝑛𝑧 ∈ (𝑓𝑖))))
8 df-3an 1074 . . . . . . . . . . 11 ((𝜃𝜏 ∧ (𝜒𝑖𝑛𝑧 ∈ (𝑓𝑖))) ↔ ((𝜃𝜏) ∧ (𝜒𝑖𝑛𝑧 ∈ (𝑓𝑖))))
98exbii 1923 . . . . . . . . . 10 (∃𝑖(𝜃𝜏 ∧ (𝜒𝑖𝑛𝑧 ∈ (𝑓𝑖))) ↔ ∃𝑖((𝜃𝜏) ∧ (𝜒𝑖𝑛𝑧 ∈ (𝑓𝑖))))
10 df-3an 1074 . . . . . . . . . 10 ((𝜃𝜏 ∧ ∃𝑖(𝜒𝑖𝑛𝑧 ∈ (𝑓𝑖))) ↔ ((𝜃𝜏) ∧ ∃𝑖(𝜒𝑖𝑛𝑧 ∈ (𝑓𝑖))))
117, 9, 103bitr4i 292 . . . . . . . . 9 (∃𝑖(𝜃𝜏 ∧ (𝜒𝑖𝑛𝑧 ∈ (𝑓𝑖))) ↔ (𝜃𝜏 ∧ ∃𝑖(𝜒𝑖𝑛𝑧 ∈ (𝑓𝑖))))
1211exbii 1923 . . . . . . . 8 (∃𝑛𝑖(𝜃𝜏 ∧ (𝜒𝑖𝑛𝑧 ∈ (𝑓𝑖))) ↔ ∃𝑛(𝜃𝜏 ∧ ∃𝑖(𝜒𝑖𝑛𝑧 ∈ (𝑓𝑖))))
13 19.42v 2030 . . . . . . . . 9 (∃𝑛((𝜃𝜏) ∧ ∃𝑖(𝜒𝑖𝑛𝑧 ∈ (𝑓𝑖))) ↔ ((𝜃𝜏) ∧ ∃𝑛𝑖(𝜒𝑖𝑛𝑧 ∈ (𝑓𝑖))))
1410exbii 1923 . . . . . . . . 9 (∃𝑛(𝜃𝜏 ∧ ∃𝑖(𝜒𝑖𝑛𝑧 ∈ (𝑓𝑖))) ↔ ∃𝑛((𝜃𝜏) ∧ ∃𝑖(𝜒𝑖𝑛𝑧 ∈ (𝑓𝑖))))
15 df-3an 1074 . . . . . . . . 9 ((𝜃𝜏 ∧ ∃𝑛𝑖(𝜒𝑖𝑛𝑧 ∈ (𝑓𝑖))) ↔ ((𝜃𝜏) ∧ ∃𝑛𝑖(𝜒𝑖𝑛𝑧 ∈ (𝑓𝑖))))
1613, 14, 153bitr4i 292 . . . . . . . 8 (∃𝑛(𝜃𝜏 ∧ ∃𝑖(𝜒𝑖𝑛𝑧 ∈ (𝑓𝑖))) ↔ (𝜃𝜏 ∧ ∃𝑛𝑖(𝜒𝑖𝑛𝑧 ∈ (𝑓𝑖))))
1712, 16bitri 264 . . . . . . 7 (∃𝑛𝑖(𝜃𝜏 ∧ (𝜒𝑖𝑛𝑧 ∈ (𝑓𝑖))) ↔ (𝜃𝜏 ∧ ∃𝑛𝑖(𝜒𝑖𝑛𝑧 ∈ (𝑓𝑖))))
1817exbii 1923 . . . . . 6 (∃𝑓𝑛𝑖(𝜃𝜏 ∧ (𝜒𝑖𝑛𝑧 ∈ (𝑓𝑖))) ↔ ∃𝑓(𝜃𝜏 ∧ ∃𝑛𝑖(𝜒𝑖𝑛𝑧 ∈ (𝑓𝑖))))
19 19.42v 2030 . . . . . . 7 (∃𝑓((𝜃𝜏) ∧ ∃𝑛𝑖(𝜒𝑖𝑛𝑧 ∈ (𝑓𝑖))) ↔ ((𝜃𝜏) ∧ ∃𝑓𝑛𝑖(𝜒𝑖𝑛𝑧 ∈ (𝑓𝑖))))
2015exbii 1923 . . . . . . 7 (∃𝑓(𝜃𝜏 ∧ ∃𝑛𝑖(𝜒𝑖𝑛𝑧 ∈ (𝑓𝑖))) ↔ ∃𝑓((𝜃𝜏) ∧ ∃𝑛𝑖(𝜒𝑖𝑛𝑧 ∈ (𝑓𝑖))))
21 df-3an 1074 . . . . . . 7 ((𝜃𝜏 ∧ ∃𝑓𝑛𝑖(𝜒𝑖𝑛𝑧 ∈ (𝑓𝑖))) ↔ ((𝜃𝜏) ∧ ∃𝑓𝑛𝑖(𝜒𝑖𝑛𝑧 ∈ (𝑓𝑖))))
2219, 20, 213bitr4i 292 . . . . . 6 (∃𝑓(𝜃𝜏 ∧ ∃𝑛𝑖(𝜒𝑖𝑛𝑧 ∈ (𝑓𝑖))) ↔ (𝜃𝜏 ∧ ∃𝑓𝑛𝑖(𝜒𝑖𝑛𝑧 ∈ (𝑓𝑖))))
2318, 22bitri 264 . . . . 5 (∃𝑓𝑛𝑖(𝜃𝜏 ∧ (𝜒𝑖𝑛𝑧 ∈ (𝑓𝑖))) ↔ (𝜃𝜏 ∧ ∃𝑓𝑛𝑖(𝜒𝑖𝑛𝑧 ∈ (𝑓𝑖))))
24 bnj255 31101 . . . . . . . 8 ((𝜃𝜏𝜒𝜁) ↔ (𝜃𝜏 ∧ (𝜒𝜁)))
25 bnj1033.7 . . . . . . . . . . 11 (𝜁 ↔ (𝑖𝑛𝑧 ∈ (𝑓𝑖)))
2625anbi2i 732 . . . . . . . . . 10 ((𝜒𝜁) ↔ (𝜒 ∧ (𝑖𝑛𝑧 ∈ (𝑓𝑖))))
27 3anass 1081 . . . . . . . . . 10 ((𝜒𝑖𝑛𝑧 ∈ (𝑓𝑖)) ↔ (𝜒 ∧ (𝑖𝑛𝑧 ∈ (𝑓𝑖))))
2826, 27bitr4i 267 . . . . . . . . 9 ((𝜒𝜁) ↔ (𝜒𝑖𝑛𝑧 ∈ (𝑓𝑖)))
29283anbi3i 1163 . . . . . . . 8 ((𝜃𝜏 ∧ (𝜒𝜁)) ↔ (𝜃𝜏 ∧ (𝜒𝑖𝑛𝑧 ∈ (𝑓𝑖))))
3024, 29bitri 264 . . . . . . 7 ((𝜃𝜏𝜒𝜁) ↔ (𝜃𝜏 ∧ (𝜒𝑖𝑛𝑧 ∈ (𝑓𝑖))))
31303exbii 1925 . . . . . 6 (∃𝑓𝑛𝑖(𝜃𝜏𝜒𝜁) ↔ ∃𝑓𝑛𝑖(𝜃𝜏 ∧ (𝜒𝑖𝑛𝑧 ∈ (𝑓𝑖))))
32 bnj1033.10 . . . . . 6 (∃𝑓𝑛𝑖(𝜃𝜏𝜒𝜁) → 𝑧𝐵)
3331, 32sylbir 225 . . . . 5 (∃𝑓𝑛𝑖(𝜃𝜏 ∧ (𝜒𝑖𝑛𝑧 ∈ (𝑓𝑖))) → 𝑧𝐵)
3423, 33sylbir 225 . . . 4 ((𝜃𝜏 ∧ ∃𝑓𝑛𝑖(𝜒𝑖𝑛𝑧 ∈ (𝑓𝑖))) → 𝑧𝐵)
356, 34syl3an3b 1512 . . 3 ((𝜃𝜏𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)) → 𝑧𝐵)
36353expia 1115 . 2 ((𝜃𝜏) → (𝑧 ∈ trCl(𝑋, 𝐴, 𝑅) → 𝑧𝐵))
3736ssrdv 3750 1 ((𝜃𝜏) → trCl(𝑋, 𝐴, 𝑅) ⊆ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wex 1853  wcel 2139  {cab 2746  wral 3050  wrex 3051  Vcvv 3340  cdif 3712  wss 3715  c0 4058  {csn 4321   ciun 4672  suc csuc 5886   Fn wfn 6044  cfv 6049  ωcom 7231  w-bnj17 31082   predc-bnj14 31084   FrSe w-bnj15 31088   trClc-bnj18 31090   TrFow-bnj19 31092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ral 3055  df-rex 3056  df-v 3342  df-in 3722  df-ss 3729  df-iun 4674  df-fn 6052  df-bnj17 31083  df-bnj18 31091
This theorem is referenced by:  bnj1034  31366
  Copyright terms: Public domain W3C validator