Mathbox for Jonathan Ben-Naim < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1023 Structured version   Visualization version   GIF version

Theorem bnj1023 31183
 Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1023.1 𝑥(𝜑𝜓)
bnj1023.2 (𝜓𝜒)
Assertion
Ref Expression
bnj1023 𝑥(𝜑𝜒)

Proof of Theorem bnj1023
StepHypRef Expression
1 bnj1023.2 . . . . 5 (𝜓𝜒)
21a1i 11 . . . 4 ((𝜑𝜓) → (𝜓𝜒))
32ax-gen 1869 . . 3 𝑥((𝜑𝜓) → (𝜓𝜒))
4 bnj1023.1 . . 3 𝑥(𝜑𝜓)
5 exintr 1970 . . 3 (∀𝑥((𝜑𝜓) → (𝜓𝜒)) → (∃𝑥(𝜑𝜓) → ∃𝑥((𝜑𝜓) ∧ (𝜓𝜒))))
63, 4, 5mp2 9 . 2 𝑥((𝜑𝜓) ∧ (𝜓𝜒))
7 pm3.33 740 . 2 (((𝜑𝜓) ∧ (𝜓𝜒)) → (𝜑𝜒))
86, 7bnj101 31123 1 𝑥(𝜑𝜒)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 382  ∀wal 1628  ∃wex 1851 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884 This theorem depends on definitions:  df-bi 197  df-an 383  df-ex 1852 This theorem is referenced by:  bnj1098  31186  bnj1110  31382  bnj1118  31384  bnj1128  31390  bnj1145  31393
 Copyright terms: Public domain W3C validator