Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj101 Structured version   Visualization version   GIF version

Theorem bnj101 31090
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj101.1 𝑥𝜑
bnj101.2 (𝜑𝜓)
Assertion
Ref Expression
bnj101 𝑥𝜓

Proof of Theorem bnj101
StepHypRef Expression
1 bnj101.1 . 2 𝑥𝜑
2 bnj101.2 . 2 (𝜑𝜓)
31, 2eximii 1905 1 𝑥𝜓
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878
This theorem depends on definitions:  df-bi 197  df-ex 1846
This theorem is referenced by:  bnj1023  31150  bnj1098  31153  bnj1101  31154  bnj1109  31156  bnj1468  31215  bnj907  31334  bnj1110  31349  bnj1118  31351  bnj1128  31357  bnj1145  31360  bnj1172  31368  bnj1174  31370  bnj1176  31372
  Copyright terms: Public domain W3C validator