Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1006 Structured version   Visualization version   GIF version

Theorem bnj1006 31367
Description: Technical lemma for bnj69 31416. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1006.1 (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
bnj1006.2 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj1006.3 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
bnj1006.4 (𝜃 ↔ (𝑅 FrSe 𝐴𝑋𝐴𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ pred(𝑦, 𝐴, 𝑅)))
bnj1006.5 (𝜏 ↔ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚𝑝 = suc 𝑛))
bnj1006.6 (𝜂 ↔ (𝑖𝑛𝑦 ∈ (𝑓𝑖)))
bnj1006.7 (𝜑′[𝑝 / 𝑛]𝜑)
bnj1006.8 (𝜓′[𝑝 / 𝑛]𝜓)
bnj1006.9 (𝜒′[𝑝 / 𝑛]𝜒)
bnj1006.10 (𝜑″[𝐺 / 𝑓]𝜑′)
bnj1006.11 (𝜓″[𝐺 / 𝑓]𝜓′)
bnj1006.12 (𝜒″[𝐺 / 𝑓]𝜒′)
bnj1006.13 𝐷 = (ω ∖ {∅})
bnj1006.15 𝐶 = 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)
bnj1006.16 𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})
bnj1006.28 ((𝜃𝜒𝜏𝜂) → (𝜒″𝑖 ∈ ω ∧ suc 𝑖𝑝))
Assertion
Ref Expression
bnj1006 ((𝜃𝜒𝜏𝜂) → pred(𝑦, 𝐴, 𝑅) ⊆ (𝐺‘suc 𝑖))
Distinct variable groups:   𝐴,𝑓,𝑖,𝑚,𝑛,𝑦   𝐷,𝑓,𝑛   𝑖,𝐺   𝑅,𝑓,𝑖,𝑚,𝑛,𝑦   𝑓,𝑋,𝑛   𝑓,𝑝,𝑖,𝑛
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜓(𝑦,𝑧,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜒(𝑦,𝑧,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜃(𝑦,𝑧,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜏(𝑦,𝑧,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜂(𝑦,𝑧,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐴(𝑧,𝑝)   𝐶(𝑦,𝑧,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐷(𝑦,𝑧,𝑖,𝑚,𝑝)   𝑅(𝑧,𝑝)   𝐺(𝑦,𝑧,𝑓,𝑚,𝑛,𝑝)   𝑋(𝑦,𝑧,𝑖,𝑚,𝑝)   𝜑′(𝑦,𝑧,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜓′(𝑦,𝑧,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜒′(𝑦,𝑧,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜑″(𝑦,𝑧,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜓″(𝑦,𝑧,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜒″(𝑦,𝑧,𝑓,𝑖,𝑚,𝑛,𝑝)

Proof of Theorem bnj1006
StepHypRef Expression
1 bnj1006.6 . . . . 5 (𝜂 ↔ (𝑖𝑛𝑦 ∈ (𝑓𝑖)))
21simprbi 484 . . . 4 (𝜂𝑦 ∈ (𝑓𝑖))
32bnj708 31164 . . 3 ((𝜃𝜒𝜏𝜂) → 𝑦 ∈ (𝑓𝑖))
4 bnj1006.4 . . . . . . . 8 (𝜃 ↔ (𝑅 FrSe 𝐴𝑋𝐴𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ pred(𝑦, 𝐴, 𝑅)))
5 bnj253 31110 . . . . . . . . 9 ((𝑅 FrSe 𝐴𝑋𝐴𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ pred(𝑦, 𝐴, 𝑅)) ↔ ((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ pred(𝑦, 𝐴, 𝑅)))
65simp1bi 1139 . . . . . . . 8 ((𝑅 FrSe 𝐴𝑋𝐴𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ pred(𝑦, 𝐴, 𝑅)) → (𝑅 FrSe 𝐴𝑋𝐴))
74, 6sylbi 207 . . . . . . 7 (𝜃 → (𝑅 FrSe 𝐴𝑋𝐴))
87bnj705 31161 . . . . . 6 ((𝜃𝜒𝜏𝜂) → (𝑅 FrSe 𝐴𝑋𝐴))
9 bnj643 31157 . . . . . . 7 ((𝜃𝜒𝜏𝜂) → 𝜒)
10 bnj1006.5 . . . . . . . . 9 (𝜏 ↔ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚𝑝 = suc 𝑛))
11 3simpc 1146 . . . . . . . . 9 ((𝑚 ∈ ω ∧ 𝑛 = suc 𝑚𝑝 = suc 𝑛) → (𝑛 = suc 𝑚𝑝 = suc 𝑛))
1210, 11sylbi 207 . . . . . . . 8 (𝜏 → (𝑛 = suc 𝑚𝑝 = suc 𝑛))
1312bnj707 31163 . . . . . . 7 ((𝜃𝜒𝜏𝜂) → (𝑛 = suc 𝑚𝑝 = suc 𝑛))
14 3anass 1080 . . . . . . 7 ((𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ↔ (𝜒 ∧ (𝑛 = suc 𝑚𝑝 = suc 𝑛)))
159, 13, 14sylanbrc 572 . . . . . 6 ((𝜃𝜒𝜏𝜂) → (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛))
16 bnj1006.1 . . . . . . 7 (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
17 bnj1006.2 . . . . . . 7 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
18 bnj1006.3 . . . . . . 7 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
19 bnj1006.13 . . . . . . 7 𝐷 = (ω ∖ {∅})
20 bnj1006.15 . . . . . . 7 𝐶 = 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)
21 biid 251 . . . . . . 7 ((𝑓 Fn 𝑛𝜑𝜓) ↔ (𝑓 Fn 𝑛𝜑𝜓))
22 biid 251 . . . . . . 7 ((𝑛𝐷𝑝 = suc 𝑛𝑚𝑛) ↔ (𝑛𝐷𝑝 = suc 𝑛𝑚𝑛))
2316, 17, 18, 19, 20, 21, 22bnj969 31354 . . . . . 6 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → 𝐶 ∈ V)
248, 15, 23syl2anc 573 . . . . 5 ((𝜃𝜒𝜏𝜂) → 𝐶 ∈ V)
2518bnj1235 31213 . . . . . 6 (𝜒𝑓 Fn 𝑛)
2625bnj706 31162 . . . . 5 ((𝜃𝜒𝜏𝜂) → 𝑓 Fn 𝑛)
2710simp3bi 1141 . . . . . 6 (𝜏𝑝 = suc 𝑛)
2827bnj707 31163 . . . . 5 ((𝜃𝜒𝜏𝜂) → 𝑝 = suc 𝑛)
291simplbi 485 . . . . . 6 (𝜂𝑖𝑛)
3029bnj708 31164 . . . . 5 ((𝜃𝜒𝜏𝜂) → 𝑖𝑛)
3124, 26, 28, 30bnj951 31184 . . . 4 ((𝜃𝜒𝜏𝜂) → (𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛𝑖𝑛))
32 bnj1006.16 . . . . 5 𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})
3332bnj945 31182 . . . 4 ((𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛𝑖𝑛) → (𝐺𝑖) = (𝑓𝑖))
3431, 33syl 17 . . 3 ((𝜃𝜒𝜏𝜂) → (𝐺𝑖) = (𝑓𝑖))
353, 34eleqtrrd 2853 . 2 ((𝜃𝜒𝜏𝜂) → 𝑦 ∈ (𝐺𝑖))
36 bnj1006.28 . . . . 5 ((𝜃𝜒𝜏𝜂) → (𝜒″𝑖 ∈ ω ∧ suc 𝑖𝑝))
3736anim1i 602 . . . 4 (((𝜃𝜒𝜏𝜂) ∧ 𝑦 ∈ (𝐺𝑖)) → ((𝜒″𝑖 ∈ ω ∧ suc 𝑖𝑝) ∧ 𝑦 ∈ (𝐺𝑖)))
38 df-bnj17 31093 . . . 4 ((𝜒″𝑖 ∈ ω ∧ suc 𝑖𝑝𝑦 ∈ (𝐺𝑖)) ↔ ((𝜒″𝑖 ∈ ω ∧ suc 𝑖𝑝) ∧ 𝑦 ∈ (𝐺𝑖)))
3937, 38sylibr 224 . . 3 (((𝜃𝜒𝜏𝜂) ∧ 𝑦 ∈ (𝐺𝑖)) → (𝜒″𝑖 ∈ ω ∧ suc 𝑖𝑝𝑦 ∈ (𝐺𝑖)))
40 bnj1006.7 . . . 4 (𝜑′[𝑝 / 𝑛]𝜑)
41 bnj1006.8 . . . 4 (𝜓′[𝑝 / 𝑛]𝜓)
42 bnj1006.9 . . . 4 (𝜒′[𝑝 / 𝑛]𝜒)
43 bnj1006.10 . . . 4 (𝜑″[𝐺 / 𝑓]𝜑′)
44 bnj1006.11 . . . 4 (𝜓″[𝐺 / 𝑓]𝜓′)
45 bnj1006.12 . . . 4 (𝜒″[𝐺 / 𝑓]𝜒′)
4616, 17, 18, 40, 41, 42, 43, 44, 45, 20, 32bnj999 31365 . . 3 ((𝜒″𝑖 ∈ ω ∧ suc 𝑖𝑝𝑦 ∈ (𝐺𝑖)) → pred(𝑦, 𝐴, 𝑅) ⊆ (𝐺‘suc 𝑖))
4739, 46syl 17 . 2 (((𝜃𝜒𝜏𝜂) ∧ 𝑦 ∈ (𝐺𝑖)) → pred(𝑦, 𝐴, 𝑅) ⊆ (𝐺‘suc 𝑖))
4835, 47mpdan 667 1 ((𝜃𝜒𝜏𝜂) → pred(𝑦, 𝐴, 𝑅) ⊆ (𝐺‘suc 𝑖))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  wral 3061  Vcvv 3351  [wsbc 3587  cdif 3720  cun 3721  wss 3723  c0 4063  {csn 4317  cop 4323   ciun 4655  suc csuc 5867   Fn wfn 6025  cfv 6030  ωcom 7216  w-bnj17 31092   predc-bnj14 31094   FrSe w-bnj15 31098   trClc-bnj18 31100
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pr 5035  ax-un 7100  ax-reg 8657
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-om 7217  df-bnj17 31093  df-bnj14 31095  df-bnj13 31097  df-bnj15 31099
This theorem is referenced by:  bnj1020  31371
  Copyright terms: Public domain W3C validator