![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bndrank | Structured version Visualization version GIF version |
Description: Any class whose elements have bounded rank is a set. Proposition 9.19 of [TakeutiZaring] p. 80. (Contributed by NM, 13-Oct-2003.) |
Ref | Expression |
---|---|
bndrank | ⊢ (∃𝑥 ∈ On ∀𝑦 ∈ 𝐴 (rank‘𝑦) ⊆ 𝑥 → 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rankon 8831 | . . . . . . . 8 ⊢ (rank‘𝑦) ∈ On | |
2 | 1 | onordi 5993 | . . . . . . 7 ⊢ Ord (rank‘𝑦) |
3 | eloni 5894 | . . . . . . 7 ⊢ (𝑥 ∈ On → Ord 𝑥) | |
4 | ordsucsssuc 7188 | . . . . . . 7 ⊢ ((Ord (rank‘𝑦) ∧ Ord 𝑥) → ((rank‘𝑦) ⊆ 𝑥 ↔ suc (rank‘𝑦) ⊆ suc 𝑥)) | |
5 | 2, 3, 4 | sylancr 698 | . . . . . 6 ⊢ (𝑥 ∈ On → ((rank‘𝑦) ⊆ 𝑥 ↔ suc (rank‘𝑦) ⊆ suc 𝑥)) |
6 | 1 | onsuci 7203 | . . . . . . 7 ⊢ suc (rank‘𝑦) ∈ On |
7 | suceloni 7178 | . . . . . . 7 ⊢ (𝑥 ∈ On → suc 𝑥 ∈ On) | |
8 | r1ord3 8818 | . . . . . . 7 ⊢ ((suc (rank‘𝑦) ∈ On ∧ suc 𝑥 ∈ On) → (suc (rank‘𝑦) ⊆ suc 𝑥 → (𝑅1‘suc (rank‘𝑦)) ⊆ (𝑅1‘suc 𝑥))) | |
9 | 6, 7, 8 | sylancr 698 | . . . . . 6 ⊢ (𝑥 ∈ On → (suc (rank‘𝑦) ⊆ suc 𝑥 → (𝑅1‘suc (rank‘𝑦)) ⊆ (𝑅1‘suc 𝑥))) |
10 | 5, 9 | sylbid 230 | . . . . 5 ⊢ (𝑥 ∈ On → ((rank‘𝑦) ⊆ 𝑥 → (𝑅1‘suc (rank‘𝑦)) ⊆ (𝑅1‘suc 𝑥))) |
11 | vex 3343 | . . . . . 6 ⊢ 𝑦 ∈ V | |
12 | 11 | rankid 8869 | . . . . 5 ⊢ 𝑦 ∈ (𝑅1‘suc (rank‘𝑦)) |
13 | ssel 3738 | . . . . 5 ⊢ ((𝑅1‘suc (rank‘𝑦)) ⊆ (𝑅1‘suc 𝑥) → (𝑦 ∈ (𝑅1‘suc (rank‘𝑦)) → 𝑦 ∈ (𝑅1‘suc 𝑥))) | |
14 | 10, 12, 13 | syl6mpi 67 | . . . 4 ⊢ (𝑥 ∈ On → ((rank‘𝑦) ⊆ 𝑥 → 𝑦 ∈ (𝑅1‘suc 𝑥))) |
15 | 14 | ralimdv 3101 | . . 3 ⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝐴 (rank‘𝑦) ⊆ 𝑥 → ∀𝑦 ∈ 𝐴 𝑦 ∈ (𝑅1‘suc 𝑥))) |
16 | dfss3 3733 | . . . 4 ⊢ (𝐴 ⊆ (𝑅1‘suc 𝑥) ↔ ∀𝑦 ∈ 𝐴 𝑦 ∈ (𝑅1‘suc 𝑥)) | |
17 | fvex 6362 | . . . . 5 ⊢ (𝑅1‘suc 𝑥) ∈ V | |
18 | 17 | ssex 4954 | . . . 4 ⊢ (𝐴 ⊆ (𝑅1‘suc 𝑥) → 𝐴 ∈ V) |
19 | 16, 18 | sylbir 225 | . . 3 ⊢ (∀𝑦 ∈ 𝐴 𝑦 ∈ (𝑅1‘suc 𝑥) → 𝐴 ∈ V) |
20 | 15, 19 | syl6 35 | . 2 ⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝐴 (rank‘𝑦) ⊆ 𝑥 → 𝐴 ∈ V)) |
21 | 20 | rexlimiv 3165 | 1 ⊢ (∃𝑥 ∈ On ∀𝑦 ∈ 𝐴 (rank‘𝑦) ⊆ 𝑥 → 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∈ wcel 2139 ∀wral 3050 ∃wrex 3051 Vcvv 3340 ⊆ wss 3715 Ord word 5883 Oncon0 5884 suc csuc 5886 ‘cfv 6049 𝑅1cr1 8798 rankcrnk 8799 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-reg 8662 ax-inf2 8711 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-om 7231 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-r1 8800 df-rank 8801 |
This theorem is referenced by: unbndrank 8878 scottex 8921 |
Copyright terms: Public domain | W3C validator |