Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  bndrank Structured version   Visualization version   GIF version

Theorem bndrank 8877
 Description: Any class whose elements have bounded rank is a set. Proposition 9.19 of [TakeutiZaring] p. 80. (Contributed by NM, 13-Oct-2003.)
Assertion
Ref Expression
bndrank (∃𝑥 ∈ On ∀𝑦𝐴 (rank‘𝑦) ⊆ 𝑥𝐴 ∈ V)
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem bndrank
StepHypRef Expression
1 rankon 8831 . . . . . . . 8 (rank‘𝑦) ∈ On
21onordi 5993 . . . . . . 7 Ord (rank‘𝑦)
3 eloni 5894 . . . . . . 7 (𝑥 ∈ On → Ord 𝑥)
4 ordsucsssuc 7188 . . . . . . 7 ((Ord (rank‘𝑦) ∧ Ord 𝑥) → ((rank‘𝑦) ⊆ 𝑥 ↔ suc (rank‘𝑦) ⊆ suc 𝑥))
52, 3, 4sylancr 698 . . . . . 6 (𝑥 ∈ On → ((rank‘𝑦) ⊆ 𝑥 ↔ suc (rank‘𝑦) ⊆ suc 𝑥))
61onsuci 7203 . . . . . . 7 suc (rank‘𝑦) ∈ On
7 suceloni 7178 . . . . . . 7 (𝑥 ∈ On → suc 𝑥 ∈ On)
8 r1ord3 8818 . . . . . . 7 ((suc (rank‘𝑦) ∈ On ∧ suc 𝑥 ∈ On) → (suc (rank‘𝑦) ⊆ suc 𝑥 → (𝑅1‘suc (rank‘𝑦)) ⊆ (𝑅1‘suc 𝑥)))
96, 7, 8sylancr 698 . . . . . 6 (𝑥 ∈ On → (suc (rank‘𝑦) ⊆ suc 𝑥 → (𝑅1‘suc (rank‘𝑦)) ⊆ (𝑅1‘suc 𝑥)))
105, 9sylbid 230 . . . . 5 (𝑥 ∈ On → ((rank‘𝑦) ⊆ 𝑥 → (𝑅1‘suc (rank‘𝑦)) ⊆ (𝑅1‘suc 𝑥)))
11 vex 3343 . . . . . 6 𝑦 ∈ V
1211rankid 8869 . . . . 5 𝑦 ∈ (𝑅1‘suc (rank‘𝑦))
13 ssel 3738 . . . . 5 ((𝑅1‘suc (rank‘𝑦)) ⊆ (𝑅1‘suc 𝑥) → (𝑦 ∈ (𝑅1‘suc (rank‘𝑦)) → 𝑦 ∈ (𝑅1‘suc 𝑥)))
1410, 12, 13syl6mpi 67 . . . 4 (𝑥 ∈ On → ((rank‘𝑦) ⊆ 𝑥𝑦 ∈ (𝑅1‘suc 𝑥)))
1514ralimdv 3101 . . 3 (𝑥 ∈ On → (∀𝑦𝐴 (rank‘𝑦) ⊆ 𝑥 → ∀𝑦𝐴 𝑦 ∈ (𝑅1‘suc 𝑥)))
16 dfss3 3733 . . . 4 (𝐴 ⊆ (𝑅1‘suc 𝑥) ↔ ∀𝑦𝐴 𝑦 ∈ (𝑅1‘suc 𝑥))
17 fvex 6362 . . . . 5 (𝑅1‘suc 𝑥) ∈ V
1817ssex 4954 . . . 4 (𝐴 ⊆ (𝑅1‘suc 𝑥) → 𝐴 ∈ V)
1916, 18sylbir 225 . . 3 (∀𝑦𝐴 𝑦 ∈ (𝑅1‘suc 𝑥) → 𝐴 ∈ V)
2015, 19syl6 35 . 2 (𝑥 ∈ On → (∀𝑦𝐴 (rank‘𝑦) ⊆ 𝑥𝐴 ∈ V))
2120rexlimiv 3165 1 (∃𝑥 ∈ On ∀𝑦𝐴 (rank‘𝑦) ⊆ 𝑥𝐴 ∈ V)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∈ wcel 2139  ∀wral 3050  ∃wrex 3051  Vcvv 3340   ⊆ wss 3715  Ord word 5883  Oncon0 5884  suc csuc 5886  ‘cfv 6049  𝑅1cr1 8798  rankcrnk 8799 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-reg 8662  ax-inf2 8711 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-om 7231  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-r1 8800  df-rank 8801 This theorem is referenced by:  unbndrank  8878  scottex  8921
 Copyright terms: Public domain W3C validator